
Find the pH of $0.005M$ $Ba{(OH)_2}$ solution at $25^\circ C$. Also calculate the pH value of the solution when $100ml$ of the above solution is diluted to $1000ml$. (Assume complete ionization of barium hydroxide).
A.$8,9$
B.$2,3$
C.$10,12$
D.$12,11$
Answer
568.8k+ views
Hint: The pH of a solution can be calculated by using the following formulae,
$pH = - \log [{H^ + }]$
$pOH = - \log [O{H^ - }]$
And $pH + pOH = 14$
The number of moles of $O{H^ - }$ in the initial solution divided by $1000ml$ (volume of diluted solution) will give the concentration of $O{H^ - }$ in the diluted solution.
Complete step by step answer:
In $0.005M$ $Ba{(OH)_2}$ solution, the reaction for ionization of $Ba{(OH)_2}$ is,
$Ba{(OH)_2} \rightleftharpoons B{a^{2 + }} + 2O{H^ - }$
$0.005M$ $Ba{(OH)_2}$ means there are $0.005$ moles of $Ba{(OH)_2}$ in $1000ml$ of solution.
Since, one mole of $Ba{(OH)_2}$ gives two moles of $O{H^ - }$ ions, therefore, $0.005$ moles of $Ba{(OH)_2}$ will give
$ = 0.005 \times 2$ moles of $O{H^ - }$
$ \Rightarrow 0.01$ moles of $O{H^ - }$
So, concentration of $O{H^ - }$ ions in $1000ml$ or $1L$ of solution
$ = \dfrac{{0.01moles}}{{1L}}$
$ \Rightarrow 0.01M$
Therefore, $pOH = - \log [0.01]$
$ \Rightarrow pOH = - ( - 2)$
$ \Rightarrow pOH = 2$
As, $pH = 14 - pOH$
$ \Rightarrow pH = 14 - 2$
$ \Rightarrow pH = 12$
There are $0.01$ moles of $O{H^ - }$ ions in $1000ml$ of initial solution. As we have taken $100ml$ of initial solution, so number of moles of $O{H^ - }$ ions are
$ = \dfrac{{0.01}}{{1000}} \times 100$
$ \Rightarrow 0.001$ moles
As the volume of solution is made $1000ml$, i.e. $1L$, so concentration of $O{H^ - }$ ions in the diluted solution is
$ = \dfrac{{0.001moles}}{{1L}}$
$ \Rightarrow 0.001M$
The pOH of diluted solution $ = - \log [0.001]$
$ \Rightarrow - ( - 3)$
$ \Rightarrow 3$
So, $pH = 14 - 3$
$ \Rightarrow pH = 11$.
Thus, the answer is option D.
Note:
In this question, for calculating the pH of the solution, instead of calculating the pOH of the solution and then subtracting it from $14$ to calculate the pH (using the formula $pH = 14 - pOH$). We can directly calculate the concentration of ${H^ + }$ ions from $O{H^ - }$ ions and then use it to calculate the pH by using the formula $pH = - \log [{H^ + }]$.
The concentration of ${H^ + }$ and $O{H^ - }$ ions are related as, $[{H^ + }][O{H^ - }] = {10^{ - 14}}$.
$pH = - \log [{H^ + }]$
$pOH = - \log [O{H^ - }]$
And $pH + pOH = 14$
The number of moles of $O{H^ - }$ in the initial solution divided by $1000ml$ (volume of diluted solution) will give the concentration of $O{H^ - }$ in the diluted solution.
Complete step by step answer:
In $0.005M$ $Ba{(OH)_2}$ solution, the reaction for ionization of $Ba{(OH)_2}$ is,
$Ba{(OH)_2} \rightleftharpoons B{a^{2 + }} + 2O{H^ - }$
$0.005M$ $Ba{(OH)_2}$ means there are $0.005$ moles of $Ba{(OH)_2}$ in $1000ml$ of solution.
Since, one mole of $Ba{(OH)_2}$ gives two moles of $O{H^ - }$ ions, therefore, $0.005$ moles of $Ba{(OH)_2}$ will give
$ = 0.005 \times 2$ moles of $O{H^ - }$
$ \Rightarrow 0.01$ moles of $O{H^ - }$
So, concentration of $O{H^ - }$ ions in $1000ml$ or $1L$ of solution
$ = \dfrac{{0.01moles}}{{1L}}$
$ \Rightarrow 0.01M$
Therefore, $pOH = - \log [0.01]$
$ \Rightarrow pOH = - ( - 2)$
$ \Rightarrow pOH = 2$
As, $pH = 14 - pOH$
$ \Rightarrow pH = 14 - 2$
$ \Rightarrow pH = 12$
There are $0.01$ moles of $O{H^ - }$ ions in $1000ml$ of initial solution. As we have taken $100ml$ of initial solution, so number of moles of $O{H^ - }$ ions are
$ = \dfrac{{0.01}}{{1000}} \times 100$
$ \Rightarrow 0.001$ moles
As the volume of solution is made $1000ml$, i.e. $1L$, so concentration of $O{H^ - }$ ions in the diluted solution is
$ = \dfrac{{0.001moles}}{{1L}}$
$ \Rightarrow 0.001M$
The pOH of diluted solution $ = - \log [0.001]$
$ \Rightarrow - ( - 3)$
$ \Rightarrow 3$
So, $pH = 14 - 3$
$ \Rightarrow pH = 11$.
Thus, the answer is option D.
Note:
In this question, for calculating the pH of the solution, instead of calculating the pOH of the solution and then subtracting it from $14$ to calculate the pH (using the formula $pH = 14 - pOH$). We can directly calculate the concentration of ${H^ + }$ ions from $O{H^ - }$ ions and then use it to calculate the pH by using the formula $pH = - \log [{H^ + }]$.
The concentration of ${H^ + }$ and $O{H^ - }$ ions are related as, $[{H^ + }][O{H^ - }] = {10^{ - 14}}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

