
Find the particular solution satisfying the given condition $\left( {{x}^{3}}+{{x}^{2}}+x+1 \right)\dfrac{dy}{dx}=2{{x}^{2}}+x$ ; $y=1$when $x=0$. \[\]
Answer
486.6k+ views
Hint: We separate the variables $x,y$ to different sides and factorize the denominator ${{x}^{3}}+{{x}^{2}}+x+1$ use partial fraction method to find $A,B,C$ in the equation expression of right hand side $\dfrac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}=\dfrac{A}{x+1}+\dfrac{Bx+C}{{{x}^{2}}+1}.$We integrate in respective sides using standard integration $\int{\dfrac{dx}{x+a}}=\log \left( x+a \right),\int{\dfrac{dx}{{{x}^{2}}+{{a}^{2}}}}=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)$ and method of substitution. \[\]
Complete step by step answer:
We are given a differential equation in the question as;
\[\left( {{x}^{3}}+{{x}^{2}}+x+1 \right)\dfrac{dy}{dx}=2{{x}^{2}}+x\]
We are also given an initial condition $y=1$when$x=0$. Let us separate the variables in the differential equation. We have;
\[dy=\dfrac{2{{x}^{2}}+x}{{{x}^{3}}+{{x}^{2}}+x+1}dx\]
We see that we cannot integrate directly. So we have to first factorize the denominator$p\left( x \right)={{x}^{3}}+{{x}^{2}}+x+1$. So let us take ${{x}^{2}}$ common form first two terms of $p\left( x \right)$ and have;
\[\begin{align}
& \Rightarrow dy=\dfrac{2{{x}^{2}}+x}{{{x}^{2}}\left( x+1 \right)+1\left( x+1 \right)}dx \\
& \Rightarrow dy=\dfrac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}dx.......\left( 1 \right) \\
\end{align}\]
Now we need to use a partial fraction method to separate the polynomials in the denominator. Let us assume for some real constants $A,B,C$
\[\dfrac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}=\dfrac{A}{x+1}+\dfrac{Bx+C}{{{x}^{2}}+1}.......\left( 2 \right)\]
We multiply both side of the above equation by $\left( x+1 \right)\left( {{x}^{2}}+1 \right)$ to have;
\[2{{x}^{2}}+x=A\left( {{x}^{2}}+1 \right)+\left( Bx+C \right)\left( x+1 \right)......\left( 3 \right)\]
Let us put $x=-1$ in above equation (3) and have;
\[\begin{align}
& 2{{\left( -1 \right)}^{2}}+\left( -1 \right)=A\left\{ {{\left( -1 \right)}^{2}}+1 \right\}+0 \\
& \Rightarrow 1=2A \\
& \Rightarrow A=\dfrac{1}{2} \\
\end{align}\]
Let us put $x=0$ in above equation (3) and have;
\[\begin{align}
& 2{{\left( 0 \right)}^{2}}+0=A\left( 0+1 \right)+\left( B\cdot 0+C \right)\left( 0+1 \right) \\
& \Rightarrow 0=A+C \\
& \Rightarrow C=-A \\
& \Rightarrow C=-\dfrac{1}{2}\left( \because A=\dfrac{1}{2} \right) \\
\end{align}\]
Let us put $x=1$ in above equation (3) and then put $A=\dfrac{1}{2},C=\dfrac{-1}{2}$ to have;
\[\begin{align}
& 2{{\left( 1 \right)}^{2}}+1=A\left( {{1}^{2}}+1 \right)+\left( B\cdot 1+C \right)\left( 1+1 \right) \\
& \Rightarrow 3=2A+2B+2C \\
& \Rightarrow A+B+C=\dfrac{3}{2} \\
& \Rightarrow \dfrac{1}{2}+B-\dfrac{1}{2}=\dfrac{3}{2} \\
& \Rightarrow B=\dfrac{3}{2} \\
\end{align}\]
Let us put the obtained values of $A,B,C$ in equation (1) to have;
\[\begin{align}
& \dfrac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}=\dfrac{A}{x+1}+\dfrac{Bx+C}{{{x}^{2}}+1} \\
& \Rightarrow \dfrac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}=\dfrac{\dfrac{1}{2}}{x+1}+\dfrac{\dfrac{3}{2}x-\dfrac{1}{2}}{{{x}^{2}}+1} \\
& \Rightarrow \dfrac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}=\dfrac{1}{2\left( x+1 \right)}+\dfrac{3x}{2\left( {{x}^{2}}+1 \right)}-\dfrac{1}{2\left( {{x}^{2}}+1 \right)} \\
\end{align}\]
We use the above equation and use it in right hand side of equation (1) to have;\[\begin{align}
& dy=\left( \dfrac{1}{2\left( x+1 \right)}+\dfrac{3x}{2\left( {{x}^{2}}+1 \right)}-\dfrac{1}{2\left( {{x}^{2}}+1 \right)} \right)dx \\
& \Rightarrow dy=\dfrac{1}{2\left( x+1 \right)}dx+\dfrac{3x}{2\left( {{x}^{2}}+1 \right)}dx-\dfrac{1}{2\left( {{x}^{2}}+1 \right)}dx \\
\end{align}\]
Let us integrate both sides using sum rule of integration with their respective variables to have;
\[\begin{align}
& \int{dy}=\int{\dfrac{1}{2\left( x+1 \right)}dx}+\int{\dfrac{3x}{2\left( {{x}^{2}}+1 \right)}dx}-\int{\dfrac{1}{2\left( {{x}^{2}}+1 \right)}dx} \\
& \Rightarrow y=\dfrac{1}{2}\int{\dfrac{1}{x+1}dx}+\dfrac{3}{2}\int{\dfrac{x}{{{x}^{2}}+1}dx}-\dfrac{1}{2}\int{\dfrac{1}{{{x}^{2}}+1}dx} \\
\end{align}\]
We integrate the first term at the right hand side using the standard integral $\int{\dfrac{dx}{x+a}}=\log \left( x+a \right)$ and the third term with the starred integral$\int{\dfrac{dx}{{{x}^{2}}+{{a}^{2}}}}=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)$. W have;
\[\begin{align}
& \Rightarrow y=\dfrac{1}{2}\log \left( x+1 \right)+\dfrac{3}{2}\int{\dfrac{x}{{{x}^{2}}+1}dx}-\dfrac{1}{2}\times \dfrac{1}{1}{{\tan }^{-1}}\left( \dfrac{x}{1} \right) \\
& \Rightarrow y=\dfrac{1}{2}\log \left( x+1 \right)+\dfrac{3}{2}\int{\dfrac{x}{{{x}^{2}}+1}dx}-\dfrac{1}{2}{{\tan }^{-1}}x+{{c}_{1}}.......\left( 4 \right) \\
\end{align}\]
We integrate the middle term using integration by substitution. Let us have $t={{x}^{2}}+1$ then we have by differentiation$dt=2xdx\Rightarrow dx=\dfrac{dt}{2x}$. So we have;
\[\dfrac{3}{2}\int{\dfrac{x}{{{x}^{2}}+1}}dx=\dfrac{3}{2}\int{\dfrac{x}{t}\times }\dfrac{dt}{2x}=\dfrac{3}{4}\int{\dfrac{dt}{t}=\dfrac{3}{4}}\log t=\dfrac{3}{4}\log \left( {{x}^{2}}+1 \right)\]
We put the above integral value sin equation (4) to have the general solution
\[y=\dfrac{1}{2}\log \left( x+1 \right)+\dfrac{3}{2}\log \left( {{x}^{2}}+1 \right)-\dfrac{1}{2}{{\tan }^{-1}}x+c\]
Here $c$ is a real constant of integration. We put the condition $y=1$when$x=0$ in the general solution to have ;
\[\begin{align}
& 1=\dfrac{1}{2}\log \left( 0+1 \right)+\dfrac{3}{2}\log \left( {{0}^{2}}+1 \right)-\dfrac{1}{2}{{\tan }^{-1}}\left( 0 \right)+c \\
& \Rightarrow 1=0+0-0+c \\
& \Rightarrow c=1 \\
\end{align}\]
We put $c=1$ in the general solution to have the particular solution as
\[y=\dfrac{1}{2}\log \left( x+1 \right)+\dfrac{3}{2}\log \left( {{x}^{2}}+1 \right)-\dfrac{1}{2}{{\tan }^{-1}}x+1\]
Note: We should note that a general solution always contains an arbitrary constant of integration $c$ but a particular solution does not. The particular solution is always obtained by putting a value of random contains in the general solution, if not it is called a singular solution. The degree of differential equation is 3 and the degree of solution equation is 2 which verify our result since the given differential equation is of first order.
Complete step by step answer:
We are given a differential equation in the question as;
\[\left( {{x}^{3}}+{{x}^{2}}+x+1 \right)\dfrac{dy}{dx}=2{{x}^{2}}+x\]
We are also given an initial condition $y=1$when$x=0$. Let us separate the variables in the differential equation. We have;
\[dy=\dfrac{2{{x}^{2}}+x}{{{x}^{3}}+{{x}^{2}}+x+1}dx\]
We see that we cannot integrate directly. So we have to first factorize the denominator$p\left( x \right)={{x}^{3}}+{{x}^{2}}+x+1$. So let us take ${{x}^{2}}$ common form first two terms of $p\left( x \right)$ and have;
\[\begin{align}
& \Rightarrow dy=\dfrac{2{{x}^{2}}+x}{{{x}^{2}}\left( x+1 \right)+1\left( x+1 \right)}dx \\
& \Rightarrow dy=\dfrac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}dx.......\left( 1 \right) \\
\end{align}\]
Now we need to use a partial fraction method to separate the polynomials in the denominator. Let us assume for some real constants $A,B,C$
\[\dfrac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}=\dfrac{A}{x+1}+\dfrac{Bx+C}{{{x}^{2}}+1}.......\left( 2 \right)\]
We multiply both side of the above equation by $\left( x+1 \right)\left( {{x}^{2}}+1 \right)$ to have;
\[2{{x}^{2}}+x=A\left( {{x}^{2}}+1 \right)+\left( Bx+C \right)\left( x+1 \right)......\left( 3 \right)\]
Let us put $x=-1$ in above equation (3) and have;
\[\begin{align}
& 2{{\left( -1 \right)}^{2}}+\left( -1 \right)=A\left\{ {{\left( -1 \right)}^{2}}+1 \right\}+0 \\
& \Rightarrow 1=2A \\
& \Rightarrow A=\dfrac{1}{2} \\
\end{align}\]
Let us put $x=0$ in above equation (3) and have;
\[\begin{align}
& 2{{\left( 0 \right)}^{2}}+0=A\left( 0+1 \right)+\left( B\cdot 0+C \right)\left( 0+1 \right) \\
& \Rightarrow 0=A+C \\
& \Rightarrow C=-A \\
& \Rightarrow C=-\dfrac{1}{2}\left( \because A=\dfrac{1}{2} \right) \\
\end{align}\]
Let us put $x=1$ in above equation (3) and then put $A=\dfrac{1}{2},C=\dfrac{-1}{2}$ to have;
\[\begin{align}
& 2{{\left( 1 \right)}^{2}}+1=A\left( {{1}^{2}}+1 \right)+\left( B\cdot 1+C \right)\left( 1+1 \right) \\
& \Rightarrow 3=2A+2B+2C \\
& \Rightarrow A+B+C=\dfrac{3}{2} \\
& \Rightarrow \dfrac{1}{2}+B-\dfrac{1}{2}=\dfrac{3}{2} \\
& \Rightarrow B=\dfrac{3}{2} \\
\end{align}\]
Let us put the obtained values of $A,B,C$ in equation (1) to have;
\[\begin{align}
& \dfrac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}=\dfrac{A}{x+1}+\dfrac{Bx+C}{{{x}^{2}}+1} \\
& \Rightarrow \dfrac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}=\dfrac{\dfrac{1}{2}}{x+1}+\dfrac{\dfrac{3}{2}x-\dfrac{1}{2}}{{{x}^{2}}+1} \\
& \Rightarrow \dfrac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}=\dfrac{1}{2\left( x+1 \right)}+\dfrac{3x}{2\left( {{x}^{2}}+1 \right)}-\dfrac{1}{2\left( {{x}^{2}}+1 \right)} \\
\end{align}\]
We use the above equation and use it in right hand side of equation (1) to have;\[\begin{align}
& dy=\left( \dfrac{1}{2\left( x+1 \right)}+\dfrac{3x}{2\left( {{x}^{2}}+1 \right)}-\dfrac{1}{2\left( {{x}^{2}}+1 \right)} \right)dx \\
& \Rightarrow dy=\dfrac{1}{2\left( x+1 \right)}dx+\dfrac{3x}{2\left( {{x}^{2}}+1 \right)}dx-\dfrac{1}{2\left( {{x}^{2}}+1 \right)}dx \\
\end{align}\]
Let us integrate both sides using sum rule of integration with their respective variables to have;
\[\begin{align}
& \int{dy}=\int{\dfrac{1}{2\left( x+1 \right)}dx}+\int{\dfrac{3x}{2\left( {{x}^{2}}+1 \right)}dx}-\int{\dfrac{1}{2\left( {{x}^{2}}+1 \right)}dx} \\
& \Rightarrow y=\dfrac{1}{2}\int{\dfrac{1}{x+1}dx}+\dfrac{3}{2}\int{\dfrac{x}{{{x}^{2}}+1}dx}-\dfrac{1}{2}\int{\dfrac{1}{{{x}^{2}}+1}dx} \\
\end{align}\]
We integrate the first term at the right hand side using the standard integral $\int{\dfrac{dx}{x+a}}=\log \left( x+a \right)$ and the third term with the starred integral$\int{\dfrac{dx}{{{x}^{2}}+{{a}^{2}}}}=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)$. W have;
\[\begin{align}
& \Rightarrow y=\dfrac{1}{2}\log \left( x+1 \right)+\dfrac{3}{2}\int{\dfrac{x}{{{x}^{2}}+1}dx}-\dfrac{1}{2}\times \dfrac{1}{1}{{\tan }^{-1}}\left( \dfrac{x}{1} \right) \\
& \Rightarrow y=\dfrac{1}{2}\log \left( x+1 \right)+\dfrac{3}{2}\int{\dfrac{x}{{{x}^{2}}+1}dx}-\dfrac{1}{2}{{\tan }^{-1}}x+{{c}_{1}}.......\left( 4 \right) \\
\end{align}\]
We integrate the middle term using integration by substitution. Let us have $t={{x}^{2}}+1$ then we have by differentiation$dt=2xdx\Rightarrow dx=\dfrac{dt}{2x}$. So we have;
\[\dfrac{3}{2}\int{\dfrac{x}{{{x}^{2}}+1}}dx=\dfrac{3}{2}\int{\dfrac{x}{t}\times }\dfrac{dt}{2x}=\dfrac{3}{4}\int{\dfrac{dt}{t}=\dfrac{3}{4}}\log t=\dfrac{3}{4}\log \left( {{x}^{2}}+1 \right)\]
We put the above integral value sin equation (4) to have the general solution
\[y=\dfrac{1}{2}\log \left( x+1 \right)+\dfrac{3}{2}\log \left( {{x}^{2}}+1 \right)-\dfrac{1}{2}{{\tan }^{-1}}x+c\]
Here $c$ is a real constant of integration. We put the condition $y=1$when$x=0$ in the general solution to have ;
\[\begin{align}
& 1=\dfrac{1}{2}\log \left( 0+1 \right)+\dfrac{3}{2}\log \left( {{0}^{2}}+1 \right)-\dfrac{1}{2}{{\tan }^{-1}}\left( 0 \right)+c \\
& \Rightarrow 1=0+0-0+c \\
& \Rightarrow c=1 \\
\end{align}\]
We put $c=1$ in the general solution to have the particular solution as
\[y=\dfrac{1}{2}\log \left( x+1 \right)+\dfrac{3}{2}\log \left( {{x}^{2}}+1 \right)-\dfrac{1}{2}{{\tan }^{-1}}x+1\]
Note: We should note that a general solution always contains an arbitrary constant of integration $c$ but a particular solution does not. The particular solution is always obtained by putting a value of random contains in the general solution, if not it is called a singular solution. The degree of differential equation is 3 and the degree of solution equation is 2 which verify our result since the given differential equation is of first order.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the major means of transport Explain each class 12 social science CBSE
