
Find the particular solution of the differential equation \[({{\tan }^{-1}}y-x)dy=(1+{{y}^{2}})dx\] given that,
\[\begin{align}
& x=0\,\,,\,\,y=0 \\
& \\
\end{align}\]
Answer
588.6k+ views
Hint: To solve the above question, we have to use the concept of solving linear equations i.e.,
If \[\dfrac{dx}{dy}+Px=Q\] is a linear differential equation, where P, Q are the functions of Y the particular then the solution will be \[x(I.F.)=\int{Q(I.F.)dy+c}\] where \[I.F.={{e}^{\int{p(y)dy}}}\] after putting the values in this formula then we will get the final answer.
Complete step-by-step solution:
So, here have the given equation \[({{\tan }^{-1}}y-x)dy=(1+{{y}^{2}})dx\]
On rearranging the above equation, we will get,
\[\dfrac{dx}{dy}=\dfrac{{{\tan }^{-1}}y-x}{1+{{y}^{2}}}\]
After this we have to split the equations into two parts and then transfer it to the other side,
\[\dfrac{dx}{dy}+\dfrac{x}{1+{{y}^{2}}}=\dfrac{{{\tan }^{-1}}y}{1+{{y}^{2}}}\]
On comparing the above equation with \[\dfrac{dx}{dy}+Px=Q\]
Here we have the values of P and Q;
\[\begin{align}
& P=\dfrac{1}{1+{{y}^{2}}} \\
& Q=\dfrac{{{\tan }^{-1}}y}{1+{{y}^{2}}} \\
\end{align}\]
Then, we have the integrating factor (I.F.) = \[{{e}^{\int{p(y)dy}}}\]=\[{{e}^{\int{\dfrac{1}{1+{{y}^{2}}}dy}}}\]
\[\Rightarrow I.F.={{e}^{{{\tan }^{-1}}y}}\]
Then the solution will be put the values in the below equation then we get,
\[x(I.F.)=\int{Q(I.F.)dy}\]
\[\Rightarrow x({{e}^{{{\tan }^{-1}}y}})=\int{\dfrac{{{\tan }^{-1}}y}{1+{{y}^{2}}}}{{e}^{{{\tan }^{-1}}y}}dy\]
For simplifying this let, \[\,t={{\tan }^{-1}}y\]
Then we will get;
\[dt=\dfrac{1}{1+{{y}^{2}}}dy\]
\[\therefore x({{e}^{{{\tan }^{-1}}y}})=\int{{{e}^{t}}t dt}\]
\[\Rightarrow x({{e}^{{{\tan }^{-1}}y}})={{e}^{{{\tan }^{-1}}y}}({{\tan }^{-1}}y-1)+C\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ \because \int{{{e}^{x}}x dx={{e}^{x}}(x-1)}+C \right]\]
Substituting the value of t in above equation then we will get;
\[\begin{align}
& \Rightarrow x({{e}^{{{\tan }^{-1}}y}})={{e}^{{{\tan }^{-1}}y}}({{\tan }^{-1}}y-1)+1...........(1) \\
& 0={{e}^{0}}\left( {{\tan }^{-1}}(0)-1 \right)+C \\
& \Rightarrow C=1 \\
& \Rightarrow x{{e}^{{{\tan }^{-1}}y}}-{{e}^{{{\tan }^{-1}}y}}({{\tan }^{-1}}y-1)=1 \\
& \Rightarrow {{e}^{{{\tan }^{-1}}y}}[x-{{\tan }^{-1}}y+1]=1 \\
\end{align}\]
We have given that y=0 when x=0
\[\Rightarrow y(0)=0\]
Now, we will put the values of x=0 and y=0 in (1) then we get;
\[\begin{align}
& 0={{e}^{0}}\left( {{\tan }^{-1}}(0)-1 \right)+C \\
& \Rightarrow C=1 \\
\end{align}\]
Putting C= 1 we get;
\[x({{e}^{{{\tan }^{-1}}y}})={{e}^{{{\tan }^{-1}}y}}({{\tan }^{-1}}y-1)+1\]
\[\Rightarrow {{e}^{{{\tan }^{-1}}y}}[x-{{\tan }^{-1}}y+1]=1\]
Hence the particular solution of \[({{\tan }^{-1}}y-x)dy=(1+{{y}^{2}})dx\] when x=0,y=0 is
\[{{e}^{{{\tan }^{-1}}y}}[x-{{\tan }^{-1}}y+1]=1\]
Note: In this context of finding the particular solution of the given equation we have a lot of methods based on the given question, many of us have doubt that which method is to be taken from a lot of methods we already have, for overcoming this problem we have to analyse all the methods keenly a day practice we can easily solve.
If \[\dfrac{dx}{dy}+Px=Q\] is a linear differential equation, where P, Q are the functions of Y the particular then the solution will be \[x(I.F.)=\int{Q(I.F.)dy+c}\] where \[I.F.={{e}^{\int{p(y)dy}}}\] after putting the values in this formula then we will get the final answer.
Complete step-by-step solution:
So, here have the given equation \[({{\tan }^{-1}}y-x)dy=(1+{{y}^{2}})dx\]
On rearranging the above equation, we will get,
\[\dfrac{dx}{dy}=\dfrac{{{\tan }^{-1}}y-x}{1+{{y}^{2}}}\]
After this we have to split the equations into two parts and then transfer it to the other side,
\[\dfrac{dx}{dy}+\dfrac{x}{1+{{y}^{2}}}=\dfrac{{{\tan }^{-1}}y}{1+{{y}^{2}}}\]
On comparing the above equation with \[\dfrac{dx}{dy}+Px=Q\]
Here we have the values of P and Q;
\[\begin{align}
& P=\dfrac{1}{1+{{y}^{2}}} \\
& Q=\dfrac{{{\tan }^{-1}}y}{1+{{y}^{2}}} \\
\end{align}\]
Then, we have the integrating factor (I.F.) = \[{{e}^{\int{p(y)dy}}}\]=\[{{e}^{\int{\dfrac{1}{1+{{y}^{2}}}dy}}}\]
\[\Rightarrow I.F.={{e}^{{{\tan }^{-1}}y}}\]
Then the solution will be put the values in the below equation then we get,
\[x(I.F.)=\int{Q(I.F.)dy}\]
\[\Rightarrow x({{e}^{{{\tan }^{-1}}y}})=\int{\dfrac{{{\tan }^{-1}}y}{1+{{y}^{2}}}}{{e}^{{{\tan }^{-1}}y}}dy\]
For simplifying this let, \[\,t={{\tan }^{-1}}y\]
Then we will get;
\[dt=\dfrac{1}{1+{{y}^{2}}}dy\]
\[\therefore x({{e}^{{{\tan }^{-1}}y}})=\int{{{e}^{t}}t dt}\]
\[\Rightarrow x({{e}^{{{\tan }^{-1}}y}})={{e}^{{{\tan }^{-1}}y}}({{\tan }^{-1}}y-1)+C\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ \because \int{{{e}^{x}}x dx={{e}^{x}}(x-1)}+C \right]\]
Substituting the value of t in above equation then we will get;
\[\begin{align}
& \Rightarrow x({{e}^{{{\tan }^{-1}}y}})={{e}^{{{\tan }^{-1}}y}}({{\tan }^{-1}}y-1)+1...........(1) \\
& 0={{e}^{0}}\left( {{\tan }^{-1}}(0)-1 \right)+C \\
& \Rightarrow C=1 \\
& \Rightarrow x{{e}^{{{\tan }^{-1}}y}}-{{e}^{{{\tan }^{-1}}y}}({{\tan }^{-1}}y-1)=1 \\
& \Rightarrow {{e}^{{{\tan }^{-1}}y}}[x-{{\tan }^{-1}}y+1]=1 \\
\end{align}\]
We have given that y=0 when x=0
\[\Rightarrow y(0)=0\]
Now, we will put the values of x=0 and y=0 in (1) then we get;
\[\begin{align}
& 0={{e}^{0}}\left( {{\tan }^{-1}}(0)-1 \right)+C \\
& \Rightarrow C=1 \\
\end{align}\]
Putting C= 1 we get;
\[x({{e}^{{{\tan }^{-1}}y}})={{e}^{{{\tan }^{-1}}y}}({{\tan }^{-1}}y-1)+1\]
\[\Rightarrow {{e}^{{{\tan }^{-1}}y}}[x-{{\tan }^{-1}}y+1]=1\]
Hence the particular solution of \[({{\tan }^{-1}}y-x)dy=(1+{{y}^{2}})dx\] when x=0,y=0 is
\[{{e}^{{{\tan }^{-1}}y}}[x-{{\tan }^{-1}}y+1]=1\]
Note: In this context of finding the particular solution of the given equation we have a lot of methods based on the given question, many of us have doubt that which method is to be taken from a lot of methods we already have, for overcoming this problem we have to analyse all the methods keenly a day practice we can easily solve.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

