
Find the particular solution of differential equation
$2y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy=0$ given that $x=0\text{ when }y=1.$
Answer
510.6k+ views
Hint: In the given differential equation the equation is in the form of $\dfrac{x}{y}$so, transform the given equation in the form of $\dfrac{dx}{dy}$. After transforming check, the homogeneity of the given equation by putting $x=\lambda x\text{ and }y=\lambda y$. Find the value of $\lambda $, and see its homogeneity. Then solve the differential equation by putting $x=vy$.once we get the standard form, we have to integrate both sides of the differential equation. After integration we get a constant. The value of this constant can be found by substituting $x=0\text{ when }y=1.$
Complete step by step answer:
The given differential equation is
$2y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy=0$
This can be written as
$\begin{align}
& 2y{{e}^{\dfrac{x}{y}}}dx=-\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy \\
& \Rightarrow 2y{{e}^{\dfrac{x}{y}}}dx=\left( 2x{{e}^{\dfrac{x}{y}}}-y \right)dy \\
& \Rightarrow \dfrac{dx}{dy}=\dfrac{\left( 2x{{e}^{\dfrac{x}{y}}}-y \right)}{2y{{e}^{\dfrac{x}{y}}}}dy-----(1) \\
\end{align}$
Here we get the differential equation in the form of $\dfrac{dx}{dy}$
Now let us assume that
$F(x,y)=\dfrac{\left( 2x{{e}^{\dfrac{x}{y}}}-y \right)}{2y{{e}^{\dfrac{x}{y}}}}$
Now we have to find $F(\lambda x,\lambda y)$, so we can write
$\begin{align}
& F(\lambda x,\lambda y)=\dfrac{\left( 2\lambda x{{e}^{\dfrac{\lambda x}{\lambda y}}}-\lambda y \right)}{2\lambda y{{e}^{\dfrac{\lambda x}{\lambda y}}}} \\
& F(\lambda x,\lambda y)=\dfrac{\lambda \left( 2x{{e}^{\dfrac{\lambda x}{\lambda y}}}-y \right)}{2\lambda y{{e}^{\dfrac{\lambda x}{\lambda y}}}} \\
\end{align}$
Here $\lambda $is cancel out. so, we have
$F(\lambda x,\lambda y)=\lambda {}^\circ F(x,y)$
Hence, we can say that the given differential equation is a homogenous differential equation of zero degree
So, in order to solve this, we have to put
$x=vy$
Hence, we can write
\[\begin{align}
& \dfrac{dx}{dy}=\dfrac{d}{dy}\left( vy \right) \\
& \Rightarrow \dfrac{dx}{dy}=\dfrac{ydv}{dy}+\dfrac{vdy}{dy} \\
& \Rightarrow \dfrac{dx}{dy}=\dfrac{ydv}{dy}+v \\
\end{align}\]
Now we put the value of $\dfrac{dx}{dy}$and $x$in $(1)$we can write further
$\begin{align}
& \dfrac{dx}{dy}=\dfrac{\left( 2x{{e}^{\dfrac{x}{y}}}-y \right)}{2y{{e}^{\dfrac{x}{y}}}}dy \\
& \Rightarrow v+y\dfrac{dv}{dy}=\dfrac{2v{{e}^{v}}-1}{2{{e}^{v}}} \\
& \Rightarrow y\dfrac{dv}{dy}=\dfrac{2v{{e}^{v}}-1}{2{{e}^{v}}}-v \\
& \Rightarrow y\dfrac{dv}{dy}=\dfrac{2v{{e}^{v}}-1-2v{{e}^{v}}}{2{{e}^{v}}} \\
& \Rightarrow y\dfrac{dv}{dy}=\dfrac{-1}{2{{e}^{v}}} \\
\end{align}$
Now on cross multiplication we can write
$2{{e}^{v}}dv=\dfrac{-dy}{y}$
now at this step we can integrate easily, so, integrating both side we can write
$\begin{align}
& \int{2{{e}^{v}}}dv=\int{\dfrac{-dy}{y}} \\
& \Rightarrow 2\int{{{e}^{v}}}dv=-\int{\dfrac{dy}{y}} \\
& \Rightarrow 2{{e}^{v}}=-\log \left| y \right|+c \\
\end{align}$
Here we use the formula$\int{{{e}^{x}}}dx={{e}^{x}}+{{c}_{1}}\text{ and }\int{\dfrac{1}{y}}dy=\log y+{{c}_{2}}$
Here $c$is the combined constant of ${{c}_{1}}\text{ and }{{c}_{2}}$
Now we put the value of $v=\dfrac{x}{y}$, hence we can write
$2{{e}^{\dfrac{x}{y}}}+\log \left| y \right|=c-----(2)$
Now from question we have the value $x=0$when $y=1$, so we have to put these values in order to find the value of $c$, hence we can write
$\begin{align}
& 2{{e}^{\dfrac{0}{1}}}+\log \left| 1 \right|=c \\
& \Rightarrow c=2 \\
\end{align}$
As we know that ${{e}^{0}}=1\text{ and }\log 1=0$
Now we put the value of $c\text{ in }(2)$, we can write
$2{{e}^{\dfrac{x}{y}}}+\log \left| y \right|=2$
So, this is the particular solution.
Note:
A function $f(x,y)$in $x\text{ and }y$is said to be a homogeneous function of degree $n$, if the degree of each term is $n$. For solving the homogeneous equation, we put $y=vx$and differentiate it and proceed.
Complete step by step answer:
The given differential equation is
$2y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy=0$
This can be written as
$\begin{align}
& 2y{{e}^{\dfrac{x}{y}}}dx=-\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy \\
& \Rightarrow 2y{{e}^{\dfrac{x}{y}}}dx=\left( 2x{{e}^{\dfrac{x}{y}}}-y \right)dy \\
& \Rightarrow \dfrac{dx}{dy}=\dfrac{\left( 2x{{e}^{\dfrac{x}{y}}}-y \right)}{2y{{e}^{\dfrac{x}{y}}}}dy-----(1) \\
\end{align}$
Here we get the differential equation in the form of $\dfrac{dx}{dy}$
Now let us assume that
$F(x,y)=\dfrac{\left( 2x{{e}^{\dfrac{x}{y}}}-y \right)}{2y{{e}^{\dfrac{x}{y}}}}$
Now we have to find $F(\lambda x,\lambda y)$, so we can write
$\begin{align}
& F(\lambda x,\lambda y)=\dfrac{\left( 2\lambda x{{e}^{\dfrac{\lambda x}{\lambda y}}}-\lambda y \right)}{2\lambda y{{e}^{\dfrac{\lambda x}{\lambda y}}}} \\
& F(\lambda x,\lambda y)=\dfrac{\lambda \left( 2x{{e}^{\dfrac{\lambda x}{\lambda y}}}-y \right)}{2\lambda y{{e}^{\dfrac{\lambda x}{\lambda y}}}} \\
\end{align}$
Here $\lambda $is cancel out. so, we have
$F(\lambda x,\lambda y)=\lambda {}^\circ F(x,y)$
Hence, we can say that the given differential equation is a homogenous differential equation of zero degree
So, in order to solve this, we have to put
$x=vy$
Hence, we can write
\[\begin{align}
& \dfrac{dx}{dy}=\dfrac{d}{dy}\left( vy \right) \\
& \Rightarrow \dfrac{dx}{dy}=\dfrac{ydv}{dy}+\dfrac{vdy}{dy} \\
& \Rightarrow \dfrac{dx}{dy}=\dfrac{ydv}{dy}+v \\
\end{align}\]
Now we put the value of $\dfrac{dx}{dy}$and $x$in $(1)$we can write further
$\begin{align}
& \dfrac{dx}{dy}=\dfrac{\left( 2x{{e}^{\dfrac{x}{y}}}-y \right)}{2y{{e}^{\dfrac{x}{y}}}}dy \\
& \Rightarrow v+y\dfrac{dv}{dy}=\dfrac{2v{{e}^{v}}-1}{2{{e}^{v}}} \\
& \Rightarrow y\dfrac{dv}{dy}=\dfrac{2v{{e}^{v}}-1}{2{{e}^{v}}}-v \\
& \Rightarrow y\dfrac{dv}{dy}=\dfrac{2v{{e}^{v}}-1-2v{{e}^{v}}}{2{{e}^{v}}} \\
& \Rightarrow y\dfrac{dv}{dy}=\dfrac{-1}{2{{e}^{v}}} \\
\end{align}$
Now on cross multiplication we can write
$2{{e}^{v}}dv=\dfrac{-dy}{y}$
now at this step we can integrate easily, so, integrating both side we can write
$\begin{align}
& \int{2{{e}^{v}}}dv=\int{\dfrac{-dy}{y}} \\
& \Rightarrow 2\int{{{e}^{v}}}dv=-\int{\dfrac{dy}{y}} \\
& \Rightarrow 2{{e}^{v}}=-\log \left| y \right|+c \\
\end{align}$
Here we use the formula$\int{{{e}^{x}}}dx={{e}^{x}}+{{c}_{1}}\text{ and }\int{\dfrac{1}{y}}dy=\log y+{{c}_{2}}$
Here $c$is the combined constant of ${{c}_{1}}\text{ and }{{c}_{2}}$
Now we put the value of $v=\dfrac{x}{y}$, hence we can write
$2{{e}^{\dfrac{x}{y}}}+\log \left| y \right|=c-----(2)$
Now from question we have the value $x=0$when $y=1$, so we have to put these values in order to find the value of $c$, hence we can write
$\begin{align}
& 2{{e}^{\dfrac{0}{1}}}+\log \left| 1 \right|=c \\
& \Rightarrow c=2 \\
\end{align}$
As we know that ${{e}^{0}}=1\text{ and }\log 1=0$
Now we put the value of $c\text{ in }(2)$, we can write
$2{{e}^{\dfrac{x}{y}}}+\log \left| y \right|=2$
So, this is the particular solution.
Note:
A function $f(x,y)$in $x\text{ and }y$is said to be a homogeneous function of degree $n$, if the degree of each term is $n$. For solving the homogeneous equation, we put $y=vx$and differentiate it and proceed.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
