
Find the order of $ {\text{O - O}} $ bond length in $ {{\text{O}}_{\text{2}}}{\text{,}}{{\text{O}}_{\text{2}}}\left[ {{\text{As}}{{\text{F}}_{\text{4}}}} \right] $ and $ {\text{K}}\left[ {{{\text{O}}_{\text{2}}}} \right] $ :
(A) $ {{\text{O}}_{\text{2}}}\left[ {{\text{As}}{{\text{F}}_{\text{4}}}} \right]\langle {{\text{O}}_{\text{2}}}\langle {\text{K}}\left[ {{{\text{O}}_{\text{2}}}} \right] $
(B) $ {{\text{O}}_{\text{2}}}\left[ {{\text{As}}{{\text{F}}_{\text{4}}}} \right]\langle {\text{K}}\left[ {{{\text{O}}_{\text{2}}}} \right]\langle {{\text{O}}_{\text{2}}} $
(C) $ {{\text{O}}_{\text{2}}}\langle {\text{K}}\left[ {{{\text{O}}_{\text{2}}}} \right]\langle {{\text{O}}_{\text{2}}}\left[ {{\text{As}}{{\text{F}}_{\text{4}}}} \right] $
(D) $ {\text{K}}\left[ {{{\text{O}}_{\text{2}}}} \right]\langle {{\text{O}}_{\text{2}}}\langle {{\text{O}}_{\text{2}}}\left[ {{\text{As}}{{\text{F}}_{\text{4}}}} \right] $
Answer
522.3k+ views
Hint: The bond length or the length of a bond or the bond distance can be determined by the number of bonding electrons. The bond length is found to be proportional to inverse of the bond order.
Complete step by step solution:
The three given molecules are $ {{\text{O}}_{\text{2}}}{\text{,}}{{\text{O}}_{\text{2}}}\left[ {{\text{As}}{{\text{F}}_{\text{4}}}} \right] $ and $ {\text{K}}\left[ {{{\text{O}}_{\text{2}}}} \right] $ .
We need to find out the order of the oxygen – oxygen, i.e., $ {\text{O - O}} $ bond length of these molecules.
Now, in the molecule $ {{\text{O}}_{\text{2}}}\left[ {{\text{As}}{{\text{F}}_{\text{4}}}} \right] $ , oxygen is present as $ {{\text{O}}_{\text{2}}}^{\text{ + }} $ and in the molecule $ {\text{K}}\left[ {{{\text{O}}_{\text{2}}}} \right] $ , oxygen is present as $ {{\text{O}}_{\text{2}}}^ - $ . So we need to find out the bond order of $ {{\text{O}}_{\text{2}}}^ - $ , $ {{\text{O}}_{\text{2}}} $ and $ {{\text{O}}_{\text{2}}}^{\text{ + }} $ .
We know from the molecular orbital theory (MOT), bond order is equal to half of the difference between the electrons in the bonding molecular orbital and the electrons in the antibonding molecular orbital. Or, bond order is equal to half of [number of electrons in the bonding molecular orbitals minus number of electrons in the antibonding molecular orbitals ]. In MOT, the antibonding orbital is designated by the asterisk symbol as a superscript on the right.
Now, from the molecular orbital theory (MOT) diagram of $ {{\text{O}}_{\text{2}}}^ - $ , the electronic configuration is $ {\left( {{{{\sigma }}_{{\text{1s}}}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{1s}}}}^{\text{*}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2s}}}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2s}}}}^{\text{*}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2}}{{\text{p}}_{\text{z}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{x}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{y}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{x}}}}}^{\text{*}}} \right)^2}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{y}}}}}^{\text{*}}} \right)^{\text{1}}} $ and we can see that there are 10 electrons in the bonding molecular orbitals and 7 electrons in the antibonding molecular orbitals. So we will have, bond order of $ {{\text{O}}_{\text{2}}}^ - $ $ = \dfrac{1}{2}\left[ {10 - 7} \right] = 1.5 $ .
Now, from the molecular orbital theory (MOT) diagram of $ {{\text{O}}_{\text{2}}} $ , the electronic configuration is $ {\left( {{{{\sigma }}_{{\text{1s}}}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{1s}}}}^{\text{*}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2s}}}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2s}}}}^{\text{*}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2}}{{\text{p}}_{\text{z}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{x}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{y}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{x}}}}}^{\text{*}}} \right)^{\text{1}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{y}}}}}^{\text{*}}} \right)^{\text{1}}} $ and we can see that there are 10 electrons in the bonding molecular orbitals and 6 electrons in the antibonding molecular orbitals. So we will have, bond order of $ {{\text{O}}_{\text{2}}} $ $ = \dfrac{1}{2}\left[ {10 - 6} \right] = 2 $ .
And from the molecular orbital theory (MOT) diagram of $ {{\text{O}}_{\text{2}}}^ + $ , the electronic configuration is $ {\left( {{{{\sigma }}_{{\text{1s}}}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{1s}}}}^{\text{*}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2s}}}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2s}}}}^{\text{*}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2}}{{\text{p}}_{\text{z}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{x}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{y}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{x}}}}}^{\text{*}}} \right)^{\text{1}}} $ and we can see that there are 10 electrons in the bonding molecular orbitals and 5 electrons in the antibonding molecular orbitals. So we will have, bond order of $ {{\text{O}}_{\text{2}}}^{\text{ + }} $ $ = \dfrac{1}{2}\left[ {10 - 5} \right] = 2.5 $ .
So the bond order increases as $ {{\text{O}}_{\text{2}}}^{\text{ - }}$> ${{\text{O}}_{\text{2}}}$ > ${{\text{O}}_{\text{2}}}^{\text{ + }} $. This means the bond length of the $ {\text{O - O}} $ bond decreases as $ {{\text{O}}_{\text{2}}}^{\text{ - }}$< ${{\text{O}}_{\text{2}}}$ < ${{\text{O}}_{\text{2}}}^{\text{ + }} $ or increases as $ {{\text{O}}_{\text{2}}}^ +$ > ${{\text{O}}_{\text{2}}}$> ${{\text{O}}_{\text{2}}}^ - $. So the bond length of the $ {\text{O - O}} $ bond increases as $ {{\text{O}}_{\text{2}}}\left[ {{\text{As}}{{\text{F}}_{\text{4}}}} \right]$> ${{\text{O}}_{\text{2}}}$> ${\text{K}}\left[ {{{\text{O}}_{\text{2}}}} \right] $ .
So the option A is correct.
Note:
The order of bond strength can also be determined from the bond order as it is directly proportional to the bond order. Longer bonds have lesser bond strengths and hence, bond strength is inversely proportional to bond length and directly proportional to bond order. Zero bond order indicates that no bond exists between the two atoms in question.
Complete step by step solution:
The three given molecules are $ {{\text{O}}_{\text{2}}}{\text{,}}{{\text{O}}_{\text{2}}}\left[ {{\text{As}}{{\text{F}}_{\text{4}}}} \right] $ and $ {\text{K}}\left[ {{{\text{O}}_{\text{2}}}} \right] $ .
We need to find out the order of the oxygen – oxygen, i.e., $ {\text{O - O}} $ bond length of these molecules.
Now, in the molecule $ {{\text{O}}_{\text{2}}}\left[ {{\text{As}}{{\text{F}}_{\text{4}}}} \right] $ , oxygen is present as $ {{\text{O}}_{\text{2}}}^{\text{ + }} $ and in the molecule $ {\text{K}}\left[ {{{\text{O}}_{\text{2}}}} \right] $ , oxygen is present as $ {{\text{O}}_{\text{2}}}^ - $ . So we need to find out the bond order of $ {{\text{O}}_{\text{2}}}^ - $ , $ {{\text{O}}_{\text{2}}} $ and $ {{\text{O}}_{\text{2}}}^{\text{ + }} $ .
We know from the molecular orbital theory (MOT), bond order is equal to half of the difference between the electrons in the bonding molecular orbital and the electrons in the antibonding molecular orbital. Or, bond order is equal to half of [number of electrons in the bonding molecular orbitals minus number of electrons in the antibonding molecular orbitals ]. In MOT, the antibonding orbital is designated by the asterisk symbol as a superscript on the right.
Now, from the molecular orbital theory (MOT) diagram of $ {{\text{O}}_{\text{2}}}^ - $ , the electronic configuration is $ {\left( {{{{\sigma }}_{{\text{1s}}}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{1s}}}}^{\text{*}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2s}}}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2s}}}}^{\text{*}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2}}{{\text{p}}_{\text{z}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{x}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{y}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{x}}}}}^{\text{*}}} \right)^2}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{y}}}}}^{\text{*}}} \right)^{\text{1}}} $ and we can see that there are 10 electrons in the bonding molecular orbitals and 7 electrons in the antibonding molecular orbitals. So we will have, bond order of $ {{\text{O}}_{\text{2}}}^ - $ $ = \dfrac{1}{2}\left[ {10 - 7} \right] = 1.5 $ .
Now, from the molecular orbital theory (MOT) diagram of $ {{\text{O}}_{\text{2}}} $ , the electronic configuration is $ {\left( {{{{\sigma }}_{{\text{1s}}}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{1s}}}}^{\text{*}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2s}}}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2s}}}}^{\text{*}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2}}{{\text{p}}_{\text{z}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{x}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{y}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{x}}}}}^{\text{*}}} \right)^{\text{1}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{y}}}}}^{\text{*}}} \right)^{\text{1}}} $ and we can see that there are 10 electrons in the bonding molecular orbitals and 6 electrons in the antibonding molecular orbitals. So we will have, bond order of $ {{\text{O}}_{\text{2}}} $ $ = \dfrac{1}{2}\left[ {10 - 6} \right] = 2 $ .
And from the molecular orbital theory (MOT) diagram of $ {{\text{O}}_{\text{2}}}^ + $ , the electronic configuration is $ {\left( {{{{\sigma }}_{{\text{1s}}}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{1s}}}}^{\text{*}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2s}}}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2s}}}}^{\text{*}}} \right)^{\text{2}}}{\left( {{{{\sigma }}_{{\text{2}}{{\text{p}}_{\text{z}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{x}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{y}}}}}} \right)^{\text{2}}}{\left( {{{{\pi }}_{{\text{2}}{{\text{p}}_{\text{x}}}}}^{\text{*}}} \right)^{\text{1}}} $ and we can see that there are 10 electrons in the bonding molecular orbitals and 5 electrons in the antibonding molecular orbitals. So we will have, bond order of $ {{\text{O}}_{\text{2}}}^{\text{ + }} $ $ = \dfrac{1}{2}\left[ {10 - 5} \right] = 2.5 $ .
So the bond order increases as $ {{\text{O}}_{\text{2}}}^{\text{ - }}$> ${{\text{O}}_{\text{2}}}$ > ${{\text{O}}_{\text{2}}}^{\text{ + }} $. This means the bond length of the $ {\text{O - O}} $ bond decreases as $ {{\text{O}}_{\text{2}}}^{\text{ - }}$< ${{\text{O}}_{\text{2}}}$ < ${{\text{O}}_{\text{2}}}^{\text{ + }} $ or increases as $ {{\text{O}}_{\text{2}}}^ +$ > ${{\text{O}}_{\text{2}}}$> ${{\text{O}}_{\text{2}}}^ - $. So the bond length of the $ {\text{O - O}} $ bond increases as $ {{\text{O}}_{\text{2}}}\left[ {{\text{As}}{{\text{F}}_{\text{4}}}} \right]$> ${{\text{O}}_{\text{2}}}$> ${\text{K}}\left[ {{{\text{O}}_{\text{2}}}} \right] $ .
So the option A is correct.
Note:
The order of bond strength can also be determined from the bond order as it is directly proportional to the bond order. Longer bonds have lesser bond strengths and hence, bond strength is inversely proportional to bond length and directly proportional to bond order. Zero bond order indicates that no bond exists between the two atoms in question.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

