
Find the numerical value of the log expression $\log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}$ if $\log a=-5$, $\log b=-7$ and $\log c=1$.
Answer
514.8k+ views
Hint: To obtain the solution of the given log expression we will use the properties of logarithm function. Firstly we will separate the numerator and denominator value of $\log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}$ in such way that we can use the other values given in it. Then we will solve it to get the desired answer.
Complete step-by-step solution:
To find the numerical value of the log expression:
$\log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}$……$\left( 1 \right)$
The values given are:
$\log a=-5$
$\log b=-7$
$\log c=1$
Now, we will use the logarithm identity given below in equation (1)
$\log \dfrac{a}{b}=\log a-\log b$
So we get,
$\log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}=\log {{a}^{4}}{{b}^{6}}-\log {{c}^{8}}$……$\left( 3 \right)$
Next, we will use the logarithm identity given below in equation (3):
$\log ab=\log a+\log b$
So we get,
$\log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}=\log {{a}^{4}}+\log {{b}^{6}}-\log {{c}^{8}}$…….$\left( 4 \right)$
Now, we will use the below identity in equation (4):
$\log {{a}^{b}}=b\log a$
So we get,
$\log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}=4\log a+6\log b-8\log c$……$\left( 5 \right)$
The values given are:
$\log a=-5$
$\log b=-7$
$\log c=1$
Substituting above value in equation (5) and simplify,
$\begin{align}
& \Rightarrow \log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}=4\times \left( -5 \right)+6\times \left( -7 \right)-8\times 1 \\
& \Rightarrow \log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}=-20-42-8 \\
& \therefore \log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}=-70 \\
\end{align}$
Hence the numerical value of $\log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}$ is $-70$
Note: The logarithm function used is inverse function of the exponential function. It is generally defined as $y={{\log }_{b}}x$ where $b$ is the base and it is read as “log base $b$ of $x$”. The logarithm with base 10 is known as common logarithm and is generally used when the base is not stated. The identities of logarithm functions are of great use for calculating higher problems involving big numbers as the product term can be changed to addition and we all know that addition of big numbers is easier than the product of big numbers. The only thing that is necessary to use the identities is that the base should be the same.
Complete step-by-step solution:
To find the numerical value of the log expression:
$\log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}$……$\left( 1 \right)$
The values given are:
$\log a=-5$
$\log b=-7$
$\log c=1$
Now, we will use the logarithm identity given below in equation (1)
$\log \dfrac{a}{b}=\log a-\log b$
So we get,
$\log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}=\log {{a}^{4}}{{b}^{6}}-\log {{c}^{8}}$……$\left( 3 \right)$
Next, we will use the logarithm identity given below in equation (3):
$\log ab=\log a+\log b$
So we get,
$\log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}=\log {{a}^{4}}+\log {{b}^{6}}-\log {{c}^{8}}$…….$\left( 4 \right)$
Now, we will use the below identity in equation (4):
$\log {{a}^{b}}=b\log a$
So we get,
$\log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}=4\log a+6\log b-8\log c$……$\left( 5 \right)$
The values given are:
$\log a=-5$
$\log b=-7$
$\log c=1$
Substituting above value in equation (5) and simplify,
$\begin{align}
& \Rightarrow \log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}=4\times \left( -5 \right)+6\times \left( -7 \right)-8\times 1 \\
& \Rightarrow \log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}=-20-42-8 \\
& \therefore \log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}=-70 \\
\end{align}$
Hence the numerical value of $\log \dfrac{{{a}^{4}}{{b}^{6}}}{{{c}^{8}}}$ is $-70$
Note: The logarithm function used is inverse function of the exponential function. It is generally defined as $y={{\log }_{b}}x$ where $b$ is the base and it is read as “log base $b$ of $x$”. The logarithm with base 10 is known as common logarithm and is generally used when the base is not stated. The identities of logarithm functions are of great use for calculating higher problems involving big numbers as the product term can be changed to addition and we all know that addition of big numbers is easier than the product of big numbers. The only thing that is necessary to use the identities is that the base should be the same.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

