Answer
Verified
386.1k+ views
Hint- The Number of diagonals are given here .So, we use the formula of finding the Number of diagonals of a polygon having n sides $ = \dfrac{{n\left( {n - 3} \right)}}{2}$
As we know that the number of diagonals of polygon having n sides $ = \dfrac{{n\left( {n - 3} \right)}}{2}$
Now it is given that polygons have 35 diagonals.
$\therefore 35 = \dfrac{{n\left( {n - 3} \right)}}{2}$
$\begin{gathered}
\Rightarrow {n^2} - 3n = 70 \\
\Rightarrow {n^2} - 3n - 70 = 0 \\
\end{gathered} $
Now factorize the equation we have
$\begin{gathered}
\Rightarrow {n^2} - 10n + 7n - 70 = 0 \\
\Rightarrow n\left( {n - 10} \right) + 7\left( {n - 10} \right) = 0 \\
\Rightarrow \left( {n - 10} \right)\left( {n + 7} \right) = 0 \\
\Rightarrow \left( {n - 10} \right) = 0{\text{ \& }}\left( {n + 7} \right) = 0 \\
\therefore n = 10,{\text{ - 7}} \\
\end{gathered} $
But the number of sides of a polygon cannot be negative.
So, the number of sides of a polygon having 35 diagonals is 10.
Note- In such types of questions the key concept we have to remember is that always recall the formula of number of diagonals of a polygon having n sides, then according to given condition substitute the value and simplify, we will get the required number of sides having 35 dia
As we know that the number of diagonals of polygon having n sides $ = \dfrac{{n\left( {n - 3} \right)}}{2}$
Now it is given that polygons have 35 diagonals.
$\therefore 35 = \dfrac{{n\left( {n - 3} \right)}}{2}$
$\begin{gathered}
\Rightarrow {n^2} - 3n = 70 \\
\Rightarrow {n^2} - 3n - 70 = 0 \\
\end{gathered} $
Now factorize the equation we have
$\begin{gathered}
\Rightarrow {n^2} - 10n + 7n - 70 = 0 \\
\Rightarrow n\left( {n - 10} \right) + 7\left( {n - 10} \right) = 0 \\
\Rightarrow \left( {n - 10} \right)\left( {n + 7} \right) = 0 \\
\Rightarrow \left( {n - 10} \right) = 0{\text{ \& }}\left( {n + 7} \right) = 0 \\
\therefore n = 10,{\text{ - 7}} \\
\end{gathered} $
But the number of sides of a polygon cannot be negative.
So, the number of sides of a polygon having 35 diagonals is 10.
Note- In such types of questions the key concept we have to remember is that always recall the formula of number of diagonals of a polygon having n sides, then according to given condition substitute the value and simplify, we will get the required number of sides having 35 dia
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE