
Find the number of prime factors in ${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}$.
A. 6
B. 7
C. 8
D. none of these
Answer
481.2k+ views
Hint: We need to use the law of indices to simplify the problem. There are 3 concepts of indices which we will use. We will convert the individual terms in the form of factorisation and their powers. Then combine the similar base terms and calculate their power. At the end we find the number of prime factors in ${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}$.
Complete step-by-step answer:
We have been given the multiplications of three terms in indices form.
We will try to form the equation in its simplest form by using the laws of indices.
Also, we need to break them to the power of their prime factors.
We know that ${{a}^{\dfrac{1}{m}}}=\sqrt[m]{a},{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}},{{a}^{m}}.{{a}^{n}}={{a}^{m+n}},\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$.
There are three terms in ${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}$ which we will break individually.
The first term is ${{\left( 216 \right)}^{\dfrac{3}{5}}}$. Using the laws of indices, we get
${{\left( 216 \right)}^{\dfrac{3}{5}}}={{\left[ {{\left( 216 \right)}^{\dfrac{1}{5}}} \right]}^{^{3}}}$. We know that $216={{2}^{3}}\times {{3}^{3}}$.
So, \[{{\left( 216 \right)}^{\dfrac{3}{5}}}={{\left( {{2}^{3}}\times {{3}^{3}} \right)}^{\dfrac{3}{5}}}={{2}^{3\times \dfrac{3}{5}}}\times {{3}^{3\times \dfrac{3}{5}}}={{2}^{\dfrac{9}{5}}}\times {{3}^{\dfrac{9}{5}}}\]
The second term is ${{\left( 2500 \right)}^{\dfrac{2}{5}}}$. Using the laws of indices, we get
${{\left( 2500 \right)}^{\dfrac{2}{5}}}={{\left[ {{\left( 2500 \right)}^{\dfrac{1}{5}}} \right]}^{^{2}}}$. We know that $2500={{2}^{2}}\times {{5}^{4}}$.
So, \[{{\left( 2500 \right)}^{\dfrac{2}{5}}}={{\left( {{2}^{2}}\times {{5}^{4}} \right)}^{\dfrac{2}{5}}}={{2}^{2\times \dfrac{2}{5}}}\times {{5}^{4\times \dfrac{2}{5}}}={{2}^{\dfrac{4}{5}}}\times {{5}^{\dfrac{8}{5}}}\]
The third term is ${{\left( 300 \right)}^{\dfrac{1}{5}}}$. We know that $300={{2}^{2}}\times 3\times {{5}^{2}}$.
Using the laws of indices, we get
So, \[{{\left( 300 \right)}^{\dfrac{1}{5}}}={{\left( {{2}^{2}}\times 3\times {{5}^{2}} \right)}^{\dfrac{1}{5}}}={{2}^{2\times \dfrac{1}{5}}}\times {{3}^{1\times \dfrac{1}{5}}}\times {{5}^{2\times \dfrac{1}{5}}}={{2}^{\dfrac{2}{5}}}\times {{3}^{\dfrac{1}{5}}}\times {{5}^{\dfrac{2}{5}}}\]
Now we need to multiply all of them
${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}=\left( {{2}^{\dfrac{9}{5}}}\times {{3}^{\dfrac{9}{5}}} \right)\times \left( {{2}^{\dfrac{4}{5}}}\times {{5}^{\dfrac{8}{5}}} \right)\times \left( {{2}^{\dfrac{2}{5}}}\times {{3}^{\dfrac{1}{5}}}\times {{5}^{\dfrac{2}{5}}} \right)$
We take the similar base terms together and find the solution
\[\begin{align}
& \left( {{2}^{\dfrac{9}{5}}}\times {{3}^{\dfrac{9}{5}}} \right)\times \left( {{2}^{\dfrac{4}{5}}}\times {{5}^{\dfrac{8}{5}}} \right)\times \left( {{2}^{\dfrac{2}{5}}}\times {{3}^{\dfrac{1}{5}}}\times {{5}^{\dfrac{2}{5}}} \right) \\
& =\left( {{2}^{\dfrac{9}{5}}}\times {{2}^{\dfrac{4}{5}}}\times {{2}^{\dfrac{2}{5}}} \right)\times \left( {{3}^{\dfrac{9}{5}}}\times {{3}^{\dfrac{1}{5}}} \right)\times \left( {{5}^{\dfrac{8}{5}}}\times {{5}^{\dfrac{2}{5}}} \right) \\
& ={{2}^{\dfrac{9}{5}+\dfrac{4}{5}+\dfrac{2}{5}}}\times {{3}^{\dfrac{9}{5}+\dfrac{1}{5}}}\times {{5}^{\dfrac{8}{5}+\dfrac{2}{5}}} \\
& ={{2}^{\dfrac{9+4+2}{5}}}\times {{3}^{\dfrac{9+1}{5}}}\times {{5}^{\dfrac{8+2}{5}}} \\
& ={{2}^{\dfrac{15}{5}}}\times {{3}^{\dfrac{10}{5}}}\times {{5}^{\dfrac{10}{5}}} \\
& ={{2}^{3}}\times {{3}^{2}}\times {{5}^{2}} \\
\end{align}\]
So, we expressed ${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}={{2}^{3}}\times {{3}^{2}}\times {{5}^{2}}$ in its simpler form.
We found there are three prime factors in ${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}$ which are 2, 3, 5.
So, the correct answer is “Option D”.
Note: We need to be careful about the laws. We need to remember the difference between ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ and ${{a}^{{{m}^{n}}}}$ which are different to each other. Also, we need to find the prime factors not the actual value of the equation. So, keeping it in the form of multiplication is necessary.
Complete step-by-step answer:
We have been given the multiplications of three terms in indices form.
We will try to form the equation in its simplest form by using the laws of indices.
Also, we need to break them to the power of their prime factors.
We know that ${{a}^{\dfrac{1}{m}}}=\sqrt[m]{a},{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}},{{a}^{m}}.{{a}^{n}}={{a}^{m+n}},\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$.
There are three terms in ${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}$ which we will break individually.
The first term is ${{\left( 216 \right)}^{\dfrac{3}{5}}}$. Using the laws of indices, we get
${{\left( 216 \right)}^{\dfrac{3}{5}}}={{\left[ {{\left( 216 \right)}^{\dfrac{1}{5}}} \right]}^{^{3}}}$. We know that $216={{2}^{3}}\times {{3}^{3}}$.
So, \[{{\left( 216 \right)}^{\dfrac{3}{5}}}={{\left( {{2}^{3}}\times {{3}^{3}} \right)}^{\dfrac{3}{5}}}={{2}^{3\times \dfrac{3}{5}}}\times {{3}^{3\times \dfrac{3}{5}}}={{2}^{\dfrac{9}{5}}}\times {{3}^{\dfrac{9}{5}}}\]
The second term is ${{\left( 2500 \right)}^{\dfrac{2}{5}}}$. Using the laws of indices, we get
${{\left( 2500 \right)}^{\dfrac{2}{5}}}={{\left[ {{\left( 2500 \right)}^{\dfrac{1}{5}}} \right]}^{^{2}}}$. We know that $2500={{2}^{2}}\times {{5}^{4}}$.
So, \[{{\left( 2500 \right)}^{\dfrac{2}{5}}}={{\left( {{2}^{2}}\times {{5}^{4}} \right)}^{\dfrac{2}{5}}}={{2}^{2\times \dfrac{2}{5}}}\times {{5}^{4\times \dfrac{2}{5}}}={{2}^{\dfrac{4}{5}}}\times {{5}^{\dfrac{8}{5}}}\]
The third term is ${{\left( 300 \right)}^{\dfrac{1}{5}}}$. We know that $300={{2}^{2}}\times 3\times {{5}^{2}}$.
Using the laws of indices, we get
So, \[{{\left( 300 \right)}^{\dfrac{1}{5}}}={{\left( {{2}^{2}}\times 3\times {{5}^{2}} \right)}^{\dfrac{1}{5}}}={{2}^{2\times \dfrac{1}{5}}}\times {{3}^{1\times \dfrac{1}{5}}}\times {{5}^{2\times \dfrac{1}{5}}}={{2}^{\dfrac{2}{5}}}\times {{3}^{\dfrac{1}{5}}}\times {{5}^{\dfrac{2}{5}}}\]
Now we need to multiply all of them
${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}=\left( {{2}^{\dfrac{9}{5}}}\times {{3}^{\dfrac{9}{5}}} \right)\times \left( {{2}^{\dfrac{4}{5}}}\times {{5}^{\dfrac{8}{5}}} \right)\times \left( {{2}^{\dfrac{2}{5}}}\times {{3}^{\dfrac{1}{5}}}\times {{5}^{\dfrac{2}{5}}} \right)$
We take the similar base terms together and find the solution
\[\begin{align}
& \left( {{2}^{\dfrac{9}{5}}}\times {{3}^{\dfrac{9}{5}}} \right)\times \left( {{2}^{\dfrac{4}{5}}}\times {{5}^{\dfrac{8}{5}}} \right)\times \left( {{2}^{\dfrac{2}{5}}}\times {{3}^{\dfrac{1}{5}}}\times {{5}^{\dfrac{2}{5}}} \right) \\
& =\left( {{2}^{\dfrac{9}{5}}}\times {{2}^{\dfrac{4}{5}}}\times {{2}^{\dfrac{2}{5}}} \right)\times \left( {{3}^{\dfrac{9}{5}}}\times {{3}^{\dfrac{1}{5}}} \right)\times \left( {{5}^{\dfrac{8}{5}}}\times {{5}^{\dfrac{2}{5}}} \right) \\
& ={{2}^{\dfrac{9}{5}+\dfrac{4}{5}+\dfrac{2}{5}}}\times {{3}^{\dfrac{9}{5}+\dfrac{1}{5}}}\times {{5}^{\dfrac{8}{5}+\dfrac{2}{5}}} \\
& ={{2}^{\dfrac{9+4+2}{5}}}\times {{3}^{\dfrac{9+1}{5}}}\times {{5}^{\dfrac{8+2}{5}}} \\
& ={{2}^{\dfrac{15}{5}}}\times {{3}^{\dfrac{10}{5}}}\times {{5}^{\dfrac{10}{5}}} \\
& ={{2}^{3}}\times {{3}^{2}}\times {{5}^{2}} \\
\end{align}\]
So, we expressed ${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}={{2}^{3}}\times {{3}^{2}}\times {{5}^{2}}$ in its simpler form.
We found there are three prime factors in ${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}$ which are 2, 3, 5.
So, the correct answer is “Option D”.
Note: We need to be careful about the laws. We need to remember the difference between ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ and ${{a}^{{{m}^{n}}}}$ which are different to each other. Also, we need to find the prime factors not the actual value of the equation. So, keeping it in the form of multiplication is necessary.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE
