
Find the number of prime factors in ${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}$.
A. 6
B. 7
C. 8
D. none of these
Answer
564.9k+ views
Hint: We need to use the law of indices to simplify the problem. There are 3 concepts of indices which we will use. We will convert the individual terms in the form of factorisation and their powers. Then combine the similar base terms and calculate their power. At the end we find the number of prime factors in ${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}$.
Complete step-by-step answer:
We have been given the multiplications of three terms in indices form.
We will try to form the equation in its simplest form by using the laws of indices.
Also, we need to break them to the power of their prime factors.
We know that ${{a}^{\dfrac{1}{m}}}=\sqrt[m]{a},{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}},{{a}^{m}}.{{a}^{n}}={{a}^{m+n}},\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$.
There are three terms in ${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}$ which we will break individually.
The first term is ${{\left( 216 \right)}^{\dfrac{3}{5}}}$. Using the laws of indices, we get
${{\left( 216 \right)}^{\dfrac{3}{5}}}={{\left[ {{\left( 216 \right)}^{\dfrac{1}{5}}} \right]}^{^{3}}}$. We know that $216={{2}^{3}}\times {{3}^{3}}$.
So, \[{{\left( 216 \right)}^{\dfrac{3}{5}}}={{\left( {{2}^{3}}\times {{3}^{3}} \right)}^{\dfrac{3}{5}}}={{2}^{3\times \dfrac{3}{5}}}\times {{3}^{3\times \dfrac{3}{5}}}={{2}^{\dfrac{9}{5}}}\times {{3}^{\dfrac{9}{5}}}\]
The second term is ${{\left( 2500 \right)}^{\dfrac{2}{5}}}$. Using the laws of indices, we get
${{\left( 2500 \right)}^{\dfrac{2}{5}}}={{\left[ {{\left( 2500 \right)}^{\dfrac{1}{5}}} \right]}^{^{2}}}$. We know that $2500={{2}^{2}}\times {{5}^{4}}$.
So, \[{{\left( 2500 \right)}^{\dfrac{2}{5}}}={{\left( {{2}^{2}}\times {{5}^{4}} \right)}^{\dfrac{2}{5}}}={{2}^{2\times \dfrac{2}{5}}}\times {{5}^{4\times \dfrac{2}{5}}}={{2}^{\dfrac{4}{5}}}\times {{5}^{\dfrac{8}{5}}}\]
The third term is ${{\left( 300 \right)}^{\dfrac{1}{5}}}$. We know that $300={{2}^{2}}\times 3\times {{5}^{2}}$.
Using the laws of indices, we get
So, \[{{\left( 300 \right)}^{\dfrac{1}{5}}}={{\left( {{2}^{2}}\times 3\times {{5}^{2}} \right)}^{\dfrac{1}{5}}}={{2}^{2\times \dfrac{1}{5}}}\times {{3}^{1\times \dfrac{1}{5}}}\times {{5}^{2\times \dfrac{1}{5}}}={{2}^{\dfrac{2}{5}}}\times {{3}^{\dfrac{1}{5}}}\times {{5}^{\dfrac{2}{5}}}\]
Now we need to multiply all of them
${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}=\left( {{2}^{\dfrac{9}{5}}}\times {{3}^{\dfrac{9}{5}}} \right)\times \left( {{2}^{\dfrac{4}{5}}}\times {{5}^{\dfrac{8}{5}}} \right)\times \left( {{2}^{\dfrac{2}{5}}}\times {{3}^{\dfrac{1}{5}}}\times {{5}^{\dfrac{2}{5}}} \right)$
We take the similar base terms together and find the solution
\[\begin{align}
& \left( {{2}^{\dfrac{9}{5}}}\times {{3}^{\dfrac{9}{5}}} \right)\times \left( {{2}^{\dfrac{4}{5}}}\times {{5}^{\dfrac{8}{5}}} \right)\times \left( {{2}^{\dfrac{2}{5}}}\times {{3}^{\dfrac{1}{5}}}\times {{5}^{\dfrac{2}{5}}} \right) \\
& =\left( {{2}^{\dfrac{9}{5}}}\times {{2}^{\dfrac{4}{5}}}\times {{2}^{\dfrac{2}{5}}} \right)\times \left( {{3}^{\dfrac{9}{5}}}\times {{3}^{\dfrac{1}{5}}} \right)\times \left( {{5}^{\dfrac{8}{5}}}\times {{5}^{\dfrac{2}{5}}} \right) \\
& ={{2}^{\dfrac{9}{5}+\dfrac{4}{5}+\dfrac{2}{5}}}\times {{3}^{\dfrac{9}{5}+\dfrac{1}{5}}}\times {{5}^{\dfrac{8}{5}+\dfrac{2}{5}}} \\
& ={{2}^{\dfrac{9+4+2}{5}}}\times {{3}^{\dfrac{9+1}{5}}}\times {{5}^{\dfrac{8+2}{5}}} \\
& ={{2}^{\dfrac{15}{5}}}\times {{3}^{\dfrac{10}{5}}}\times {{5}^{\dfrac{10}{5}}} \\
& ={{2}^{3}}\times {{3}^{2}}\times {{5}^{2}} \\
\end{align}\]
So, we expressed ${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}={{2}^{3}}\times {{3}^{2}}\times {{5}^{2}}$ in its simpler form.
We found there are three prime factors in ${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}$ which are 2, 3, 5.
So, the correct answer is “Option D”.
Note: We need to be careful about the laws. We need to remember the difference between ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ and ${{a}^{{{m}^{n}}}}$ which are different to each other. Also, we need to find the prime factors not the actual value of the equation. So, keeping it in the form of multiplication is necessary.
Complete step-by-step answer:
We have been given the multiplications of three terms in indices form.
We will try to form the equation in its simplest form by using the laws of indices.
Also, we need to break them to the power of their prime factors.
We know that ${{a}^{\dfrac{1}{m}}}=\sqrt[m]{a},{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}},{{a}^{m}}.{{a}^{n}}={{a}^{m+n}},\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$.
There are three terms in ${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}$ which we will break individually.
The first term is ${{\left( 216 \right)}^{\dfrac{3}{5}}}$. Using the laws of indices, we get
${{\left( 216 \right)}^{\dfrac{3}{5}}}={{\left[ {{\left( 216 \right)}^{\dfrac{1}{5}}} \right]}^{^{3}}}$. We know that $216={{2}^{3}}\times {{3}^{3}}$.
So, \[{{\left( 216 \right)}^{\dfrac{3}{5}}}={{\left( {{2}^{3}}\times {{3}^{3}} \right)}^{\dfrac{3}{5}}}={{2}^{3\times \dfrac{3}{5}}}\times {{3}^{3\times \dfrac{3}{5}}}={{2}^{\dfrac{9}{5}}}\times {{3}^{\dfrac{9}{5}}}\]
The second term is ${{\left( 2500 \right)}^{\dfrac{2}{5}}}$. Using the laws of indices, we get
${{\left( 2500 \right)}^{\dfrac{2}{5}}}={{\left[ {{\left( 2500 \right)}^{\dfrac{1}{5}}} \right]}^{^{2}}}$. We know that $2500={{2}^{2}}\times {{5}^{4}}$.
So, \[{{\left( 2500 \right)}^{\dfrac{2}{5}}}={{\left( {{2}^{2}}\times {{5}^{4}} \right)}^{\dfrac{2}{5}}}={{2}^{2\times \dfrac{2}{5}}}\times {{5}^{4\times \dfrac{2}{5}}}={{2}^{\dfrac{4}{5}}}\times {{5}^{\dfrac{8}{5}}}\]
The third term is ${{\left( 300 \right)}^{\dfrac{1}{5}}}$. We know that $300={{2}^{2}}\times 3\times {{5}^{2}}$.
Using the laws of indices, we get
So, \[{{\left( 300 \right)}^{\dfrac{1}{5}}}={{\left( {{2}^{2}}\times 3\times {{5}^{2}} \right)}^{\dfrac{1}{5}}}={{2}^{2\times \dfrac{1}{5}}}\times {{3}^{1\times \dfrac{1}{5}}}\times {{5}^{2\times \dfrac{1}{5}}}={{2}^{\dfrac{2}{5}}}\times {{3}^{\dfrac{1}{5}}}\times {{5}^{\dfrac{2}{5}}}\]
Now we need to multiply all of them
${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}=\left( {{2}^{\dfrac{9}{5}}}\times {{3}^{\dfrac{9}{5}}} \right)\times \left( {{2}^{\dfrac{4}{5}}}\times {{5}^{\dfrac{8}{5}}} \right)\times \left( {{2}^{\dfrac{2}{5}}}\times {{3}^{\dfrac{1}{5}}}\times {{5}^{\dfrac{2}{5}}} \right)$
We take the similar base terms together and find the solution
\[\begin{align}
& \left( {{2}^{\dfrac{9}{5}}}\times {{3}^{\dfrac{9}{5}}} \right)\times \left( {{2}^{\dfrac{4}{5}}}\times {{5}^{\dfrac{8}{5}}} \right)\times \left( {{2}^{\dfrac{2}{5}}}\times {{3}^{\dfrac{1}{5}}}\times {{5}^{\dfrac{2}{5}}} \right) \\
& =\left( {{2}^{\dfrac{9}{5}}}\times {{2}^{\dfrac{4}{5}}}\times {{2}^{\dfrac{2}{5}}} \right)\times \left( {{3}^{\dfrac{9}{5}}}\times {{3}^{\dfrac{1}{5}}} \right)\times \left( {{5}^{\dfrac{8}{5}}}\times {{5}^{\dfrac{2}{5}}} \right) \\
& ={{2}^{\dfrac{9}{5}+\dfrac{4}{5}+\dfrac{2}{5}}}\times {{3}^{\dfrac{9}{5}+\dfrac{1}{5}}}\times {{5}^{\dfrac{8}{5}+\dfrac{2}{5}}} \\
& ={{2}^{\dfrac{9+4+2}{5}}}\times {{3}^{\dfrac{9+1}{5}}}\times {{5}^{\dfrac{8+2}{5}}} \\
& ={{2}^{\dfrac{15}{5}}}\times {{3}^{\dfrac{10}{5}}}\times {{5}^{\dfrac{10}{5}}} \\
& ={{2}^{3}}\times {{3}^{2}}\times {{5}^{2}} \\
\end{align}\]
So, we expressed ${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}={{2}^{3}}\times {{3}^{2}}\times {{5}^{2}}$ in its simpler form.
We found there are three prime factors in ${{\left( 216 \right)}^{\dfrac{3}{5}}}\times {{\left( 2500 \right)}^{\dfrac{2}{5}}}\times {{\left( 300 \right)}^{\dfrac{1}{5}}}$ which are 2, 3, 5.
So, the correct answer is “Option D”.
Note: We need to be careful about the laws. We need to remember the difference between ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ and ${{a}^{{{m}^{n}}}}$ which are different to each other. Also, we need to find the prime factors not the actual value of the equation. So, keeping it in the form of multiplication is necessary.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

