
Find the number of permutations of all the letters of the word “MATHEMATICS” which starts with consonants only.
Answer
585.6k+ views
Hint: To find the number of permutation of consonants starting word, we separate the consonants and then find permutation of each of those consonants. Using the permutation formula for each letter group is:
\[P({{n}_{1}},{{n}_{2}},...n)=\dfrac{X!}{{{n}_{1}}!,{{n}_{2}}!,...n!}\]
where \[{{n}_{1}},{{n}_{2}},...n\] are the group of consonants and \[X\] is the total number letters in the word given.
Complete step-by-step answer:
The total number of letters in the word “MATHEMATICS” is \[10\].
Now separating the letter groups we have:
For T starting as first letter in the word:
\[P(T)=\dfrac{10!}{2!.2!}\]
For M starting as first letter in the word:
\[P(M)=\dfrac{10!}{2!.2!}\]
For H, C, S starting as first letter in the word:
\[P(H,C,S)=3\times \dfrac{10!}{2!.2!.2!}\]
Hence, the total possibility of permutation is given as:
\[P(T,T,M,M,H,C,S)=3\times \dfrac{10!}{2!.2!.2!}+\dfrac{10!}{2!.2!}+\dfrac{10!}{2!.2!}\]
\[=3\times \dfrac{10!}{2!.2!.2!}+2\times \dfrac{10!}{2!.2!}\]
\[=3\times \dfrac{10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1}{2\times 1.2\times 1.2\times 1}+2\times \dfrac{10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1}{2\times 1.2\times 1}\]
\[=3\times \dfrac{10\times 9\times 7\times 6\times 5\times 4\times 3\times 2\times 1}{1}+\dfrac{10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 1}{1}\]
\[=3175200\]
Hence, the number of ways consonants starting the word is \[3175200\].
Note: Students may be wrong while solving the sum of the factorial value of multiple groups that are solved above. Another way to solve the sum easily is to find commons in the denominator:
\[=3\times \dfrac{10!}{2!.2!.2!}+2\times \dfrac{10!}{2!.2!}\]
\[=\dfrac{10!}{2!.2!}\left[ 3\times \dfrac{1}{2!}+2\times \dfrac{1}{1} \right]\]
\[=\dfrac{10!}{2!.2!}\left[ \dfrac{3}{2}+2 \right]\]
\[=\dfrac{10!}{2!.2!}\left[ \dfrac{7}{2} \right]\]
\[=3175200\]
\[P({{n}_{1}},{{n}_{2}},...n)=\dfrac{X!}{{{n}_{1}}!,{{n}_{2}}!,...n!}\]
where \[{{n}_{1}},{{n}_{2}},...n\] are the group of consonants and \[X\] is the total number letters in the word given.
Complete step-by-step answer:
The total number of letters in the word “MATHEMATICS” is \[10\].
Now separating the letter groups we have:
For T starting as first letter in the word:
\[P(T)=\dfrac{10!}{2!.2!}\]
For M starting as first letter in the word:
\[P(M)=\dfrac{10!}{2!.2!}\]
For H, C, S starting as first letter in the word:
\[P(H,C,S)=3\times \dfrac{10!}{2!.2!.2!}\]
Hence, the total possibility of permutation is given as:
\[P(T,T,M,M,H,C,S)=3\times \dfrac{10!}{2!.2!.2!}+\dfrac{10!}{2!.2!}+\dfrac{10!}{2!.2!}\]
\[=3\times \dfrac{10!}{2!.2!.2!}+2\times \dfrac{10!}{2!.2!}\]
\[=3\times \dfrac{10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1}{2\times 1.2\times 1.2\times 1}+2\times \dfrac{10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1}{2\times 1.2\times 1}\]
\[=3\times \dfrac{10\times 9\times 7\times 6\times 5\times 4\times 3\times 2\times 1}{1}+\dfrac{10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 1}{1}\]
\[=3175200\]
Hence, the number of ways consonants starting the word is \[3175200\].
Note: Students may be wrong while solving the sum of the factorial value of multiple groups that are solved above. Another way to solve the sum easily is to find commons in the denominator:
\[=3\times \dfrac{10!}{2!.2!.2!}+2\times \dfrac{10!}{2!.2!}\]
\[=\dfrac{10!}{2!.2!}\left[ 3\times \dfrac{1}{2!}+2\times \dfrac{1}{1} \right]\]
\[=\dfrac{10!}{2!.2!}\left[ \dfrac{3}{2}+2 \right]\]
\[=\dfrac{10!}{2!.2!}\left[ \dfrac{7}{2} \right]\]
\[=3175200\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

