Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Find the number of all the integral of the inequality \[\dfrac{{({x^2} + 2)(\sqrt {{x^2} - 16} )}}{{({x^4} + 2)({x^2} - 9)}} \leqslant 0\].

seo-qna
Last updated date: 17th Apr 2024
Total views: 396k
Views today: 11.96k
Answer
VerifiedVerified
396k+ views
Hint: Consider only those terms which affect the inequality sign less than equal to. First we change the denominator sign on the right side and then we will solve the equation.

Complete step by step answer:
(1) Given inequality is \[\dfrac{{({x^2} + 2)\sqrt {{x^2} - 16} }}{{({x^4} + 2)({x^2} - 9)}} \leqslant 0\]
Since, LHS of inequality is negative but terms \[\left( {{x^2} + 2} \right){\text{ }}and{\text{ }}\left( {{x^4} + 2} \right)\] are always positive for all value of $x$.

(2) On taking \[\left( {{x^2} + 2} \right){\text{ }}and{\text{ }}\left( {{x^4} + 2} \right)\] on RHS, we have
\[\dfrac{{\sqrt {{x^2} - 16} }}{{({x^2} - 9)}} \leqslant 0\]

(3) But \[\sqrt {{x^2} - 16} \geqslant 0\]always
\[\therefore for\dfrac{{\sqrt {{x^2} - 16} }}{{{x^2} - 9}}\] to be negative
\[\sqrt {{x^2} - 16} \geqslant 0,\,\,{x^2} - 9 \leqslant 0\]
Implies that \[{x^2}-9 \leqslant 0\]

(4) Hence from above we got two inequalities
\[\sqrt {{x^2} - 16} \geqslant 0,\,\,{x^2} - 9 \leqslant 0\]
Solving separately by these two terms,
seo images

(5)\[{x^2} - 9 \leqslant 0\]
\[{x^2} \leqslant 9\]
$x \leqslant 3$
\[ - 3 < x < 3\]
\[x \in ( - 3,3)\]
seo images

(6) Also,
\[\sqrt {{x^2} - 16} \geqslant 0\]
\[
  {x^2} \geqslant 16 \\
  x \geqslant 4 \\
  x < - 4,\,\,x > 4 \\
 \]
(7) On combining two solutions in number line
seo images

(8) There is no common region hence integral value of solution for given inequality is zero \[(\phi ).\]

Note: If $f\left( x \right) \leqslant \,\,g(x)$on the interval \[\left[ {a,b} \right],\] then the integral of \[f\left( x \right)\] is less than or equal to the integral of \[g\left( x \right)\]on the interval \[\left[ {a,b} \right]\]. As a special case, if $m \leqslant f(x) \leqslant M$ on [a,b], then the integral of \[f\left( x \right)\] is between \[m\left( {b - a} \right){\text{ }}and{\text{ }}M\left( {b - a} \right).\]