
Find the number of all the integral of the inequality \[\dfrac{{({x^2} + 2)(\sqrt {{x^2} - 16} )}}{{({x^4} + 2)({x^2} - 9)}} \leqslant 0\].
Answer
580.2k+ views
Hint: Consider only those terms which affect the inequality sign less than equal to. First we change the denominator sign on the right side and then we will solve the equation.
Complete step by step answer:
(1) Given inequality is \[\dfrac{{({x^2} + 2)\sqrt {{x^2} - 16} }}{{({x^4} + 2)({x^2} - 9)}} \leqslant 0\]
Since, LHS of inequality is negative but terms \[\left( {{x^2} + 2} \right){\text{ }}and{\text{ }}\left( {{x^4} + 2} \right)\] are always positive for all value of $x$.
(2) On taking \[\left( {{x^2} + 2} \right){\text{ }}and{\text{ }}\left( {{x^4} + 2} \right)\] on RHS, we have
\[\dfrac{{\sqrt {{x^2} - 16} }}{{({x^2} - 9)}} \leqslant 0\]
(3) But \[\sqrt {{x^2} - 16} \geqslant 0\]always
\[\therefore for\dfrac{{\sqrt {{x^2} - 16} }}{{{x^2} - 9}}\] to be negative
\[\sqrt {{x^2} - 16} \geqslant 0,\,\,{x^2} - 9 \leqslant 0\]
Implies that \[{x^2}-9 \leqslant 0\]
(4) Hence from above we got two inequalities
\[\sqrt {{x^2} - 16} \geqslant 0,\,\,{x^2} - 9 \leqslant 0\]
Solving separately by these two terms,
(5)\[{x^2} - 9 \leqslant 0\]
\[{x^2} \leqslant 9\]
$x \leqslant 3$
\[ - 3 < x < 3\]
\[x \in ( - 3,3)\]
(6) Also,
\[\sqrt {{x^2} - 16} \geqslant 0\]
\[
{x^2} \geqslant 16 \\
x \geqslant 4 \\
x < - 4,\,\,x > 4 \\
\]
(7) On combining two solutions in number line
(8) There is no common region hence integral value of solution for given inequality is zero \[(\phi ).\]
Note: If $f\left( x \right) \leqslant \,\,g(x)$on the interval \[\left[ {a,b} \right],\] then the integral of \[f\left( x \right)\] is less than or equal to the integral of \[g\left( x \right)\]on the interval \[\left[ {a,b} \right]\]. As a special case, if $m \leqslant f(x) \leqslant M$ on [a,b], then the integral of \[f\left( x \right)\] is between \[m\left( {b - a} \right){\text{ }}and{\text{ }}M\left( {b - a} \right).\]
Complete step by step answer:
(1) Given inequality is \[\dfrac{{({x^2} + 2)\sqrt {{x^2} - 16} }}{{({x^4} + 2)({x^2} - 9)}} \leqslant 0\]
Since, LHS of inequality is negative but terms \[\left( {{x^2} + 2} \right){\text{ }}and{\text{ }}\left( {{x^4} + 2} \right)\] are always positive for all value of $x$.
(2) On taking \[\left( {{x^2} + 2} \right){\text{ }}and{\text{ }}\left( {{x^4} + 2} \right)\] on RHS, we have
\[\dfrac{{\sqrt {{x^2} - 16} }}{{({x^2} - 9)}} \leqslant 0\]
(3) But \[\sqrt {{x^2} - 16} \geqslant 0\]always
\[\therefore for\dfrac{{\sqrt {{x^2} - 16} }}{{{x^2} - 9}}\] to be negative
\[\sqrt {{x^2} - 16} \geqslant 0,\,\,{x^2} - 9 \leqslant 0\]
Implies that \[{x^2}-9 \leqslant 0\]
(4) Hence from above we got two inequalities
\[\sqrt {{x^2} - 16} \geqslant 0,\,\,{x^2} - 9 \leqslant 0\]
Solving separately by these two terms,
(5)\[{x^2} - 9 \leqslant 0\]
\[{x^2} \leqslant 9\]
$x \leqslant 3$
\[ - 3 < x < 3\]
\[x \in ( - 3,3)\]
(6) Also,
\[\sqrt {{x^2} - 16} \geqslant 0\]
\[
{x^2} \geqslant 16 \\
x \geqslant 4 \\
x < - 4,\,\,x > 4 \\
\]
(7) On combining two solutions in number line
(8) There is no common region hence integral value of solution for given inequality is zero \[(\phi ).\]
Note: If $f\left( x \right) \leqslant \,\,g(x)$on the interval \[\left[ {a,b} \right],\] then the integral of \[f\left( x \right)\] is less than or equal to the integral of \[g\left( x \right)\]on the interval \[\left[ {a,b} \right]\]. As a special case, if $m \leqslant f(x) \leqslant M$ on [a,b], then the integral of \[f\left( x \right)\] is between \[m\left( {b - a} \right){\text{ }}and{\text{ }}M\left( {b - a} \right).\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

