Find the modulus and argument of the complex number \[\sqrt 3 - i\] hence convert it into polar form.
Answer
Verified
480.9k+ views
Hint:
Complex number is a number generally represented as\[z = a + ib\], where \[a\] and \[b\] is real number represented on real axis whereas \[i\] is an imaginary unit represented on imaginary axis whose value is \[i = \sqrt { - 1} \]. Modulus of a complex number is length of line segment on real and imaginary axis generally denoted by \[\left| z \right|\] whereas angle subtended by line segment on the real axis is the argument of the matrix denoted by arg (z) calculated by trigonometric value. Argument of complex numbers is denoted by \[\arg (z) = \theta = {\tan ^{ - 1}}\dfrac{b}{a}\].
Complete step by step solution:
The given complex number in question can be written as\[z = a + ib = \sqrt 3 - i\], where \[a = \sqrt 3 \] and \[b = - 1\]
Here the modulus of complex number \[z\] will be
\[
\left| z \right| = \sqrt {{a^2} + {b^2}} \\
= \sqrt {{{\left( {\sqrt 3 } \right)}^2} + {{\left( { - 1} \right)}^2}} \\
= \sqrt {3 + 1} \\
= \sqrt 4 \\
= 2 \\
\]
Hence, the modulus of the complex number will be 2.
Argument of the complex:
\[
\arg (z) = \theta \\
= {\tan ^{ - 1}}\dfrac{b}{a} \\
= {\tan ^{ - 1}}\dfrac{{ - 1}}{{\sqrt 3 }} \\
= 180° - 30° \\
= 150° \\
\]
This can be written in radian as:
\[
\theta = 150 \times \dfrac{\pi }{{180}} \\
= \dfrac{{5\pi }}{6} \\
\]
Note:
Complex numbers are always written in the form of \[z = a + ib\] where $a$ and $b$ are real numbers whereas \[i\] is an imaginary part.
We can convert a degree into radian by multiplying it by\[\dfrac{\pi }{{180}}\].
Complex number is a number generally represented as\[z = a + ib\], where \[a\] and \[b\] is real number represented on real axis whereas \[i\] is an imaginary unit represented on imaginary axis whose value is \[i = \sqrt { - 1} \]. Modulus of a complex number is length of line segment on real and imaginary axis generally denoted by \[\left| z \right|\] whereas angle subtended by line segment on the real axis is the argument of the matrix denoted by arg (z) calculated by trigonometric value. Argument of complex numbers is denoted by \[\arg (z) = \theta = {\tan ^{ - 1}}\dfrac{b}{a}\].
Complete step by step solution:
The given complex number in question can be written as\[z = a + ib = \sqrt 3 - i\], where \[a = \sqrt 3 \] and \[b = - 1\]
Here the modulus of complex number \[z\] will be
\[
\left| z \right| = \sqrt {{a^2} + {b^2}} \\
= \sqrt {{{\left( {\sqrt 3 } \right)}^2} + {{\left( { - 1} \right)}^2}} \\
= \sqrt {3 + 1} \\
= \sqrt 4 \\
= 2 \\
\]
Hence, the modulus of the complex number will be 2.
Argument of the complex:
\[
\arg (z) = \theta \\
= {\tan ^{ - 1}}\dfrac{b}{a} \\
= {\tan ^{ - 1}}\dfrac{{ - 1}}{{\sqrt 3 }} \\
= 180° - 30° \\
= 150° \\
\]
This can be written in radian as:
\[
\theta = 150 \times \dfrac{\pi }{{180}} \\
= \dfrac{{5\pi }}{6} \\
\]
Note:
Complex numbers are always written in the form of \[z = a + ib\] where $a$ and $b$ are real numbers whereas \[i\] is an imaginary part.
We can convert a degree into radian by multiplying it by\[\dfrac{\pi }{{180}}\].
Recently Updated Pages
Using the following information to help you answer class 12 chemistry CBSE
Basicity of sulphurous acid and sulphuric acid are
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Draw a labelled sketch of the human eye class 12 physics CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?