
Find the mean proportion between
a) $ 81 $ and $ 121 $
b) $ 1.8 $ and $ 0.2 $
c) $ \dfrac{2}{3} $ and $ \dfrac{8}{{27}} $
d) $ 0.32 $ and $ 0.08 $
e) $ \dfrac{1}{{25}} $ and $ \dfrac{1}{{16}} $
Answer
486k+ views
Hint: The question asks about the mean proportion between two numbers. If we have the mean proportion of two numbers $ a,b $ as $ x $ then it has a property that the ratio between $ a $ and $ x $ is the same as $ x $ and. $ b $ So taking this in mind we will use the formula for generating the mean proportion of the given numbers which will serve as the answer of this question.
Formula used:
If we have the mean proportion of two numbers $ a,b $ as $ x $ then,
$ \dfrac{a}{x} = \dfrac{x}{b} $ where, $ a \leqslant x \leqslant b $
Complete step-by-step answer:
The given numbers are $ 81 $ and $ 121 $
If we put $ a = 81,b = 121 $ in the mean proportion formula we have,
$ \dfrac{{81}}{x} = \dfrac{x}{{121}} $
$ \Rightarrow {x^2} = 81 \times 121 $
Now the squares of $ 9 $ and $ 11 $ are $ 81 $ and $ 121 $ respectively so,
$ \Rightarrow {x^2} = {9^2} \times {11^2} = {(9 \times 11)^2} $
The fact that $ {\alpha ^2} = {\beta ^2} \Rightarrow \alpha = \beta $ gives us
$ x = 9 \times 11 $
The product of $ 9 $ and $ 11 $ gives us $ 99 $ so,
$ x = 99 $
Therefore, the mean proportion of the numbers given to us is $ 99 $ .
So, the correct answer is “ $ 99 $ ”.
Similarly for (b) we have
$ \dfrac{{1.8}}{x} = \dfrac{x}{{0.2}} $
$ \Rightarrow {x^2} = 1.8 \times 0.2 = 0.36 $
$ \Rightarrow {x^2} = {(0.6)^2} $
The fact that $ {\alpha ^2} = {\beta ^2} \Rightarrow \alpha = \beta $ gives us
$ x = 0.6 $
Therefore, the mean proportion of the numbers given to us is $ 0.6 $ .
So, the correct answer is “ $ 0.6 $ ”.
Same is for:
c) $ \dfrac{{\left( {\dfrac{2}{3}} \right)}}{x} = \dfrac{x}{{\left( {\dfrac{8}{{27}}} \right)}} $
$ \Rightarrow {x^2} = \dfrac{2}{3} \times \dfrac{8}{{27}} = \dfrac{{16}}{{81}} $
$ \Rightarrow {x^2} = {\left( {\dfrac{4}{9}} \right)^2} $
$ \Rightarrow x = \left( {\dfrac{4}{9}} \right) $
Therefore, the mean proportion of the numbers given to us is $ \dfrac{4}{9} $ .
So, the correct answer is “ $ \dfrac{4}{9} $ ”.
d) $ \dfrac{{0.32}}{x} = \dfrac{x}{{0.08}} $
$ \Rightarrow {x^2} = 0.032 \times 0.08 = 0.00256 $
$ \Rightarrow x = 0.016 $
Therefore, the mean proportion of the numbers given to us is $ 0.016 $ .
So, the correct answer is “ $ 0.016 $ ”.
e) $ \dfrac{{\left( {\dfrac{1}{{25}}} \right)}}{x} = \dfrac{x}{{\left( {\dfrac{1}{{16}}} \right)}} $
$ \Rightarrow {x^2} = \dfrac{1}{{25}} \times \dfrac{1}{{16}} = \dfrac{1}{{{5^2}}} \times \dfrac{1}{{{4^2}}} = {\left( {\dfrac{1}{5} \times \dfrac{1}{4}} \right)^2} $
$ \Rightarrow x = \dfrac{1}{5} \times \dfrac{1}{4} $
$ \Rightarrow x = \dfrac{1}{{20}} $
Therefore, the mean proportion of the numbers given to us is $ \dfrac{1}{{20}} $ .
So, the correct answer is “ $ \dfrac{1}{{20}} $ ”.
Note: While calculating the mean proportion $ x $ always try to simplify the numbers to small factors so that you can easily find the root of that number. Multiplying the numbers will result in a larger number whose root calculation then will be a messy work.
Formula used:
If we have the mean proportion of two numbers $ a,b $ as $ x $ then,
$ \dfrac{a}{x} = \dfrac{x}{b} $ where, $ a \leqslant x \leqslant b $
Complete step-by-step answer:
The given numbers are $ 81 $ and $ 121 $
If we put $ a = 81,b = 121 $ in the mean proportion formula we have,
$ \dfrac{{81}}{x} = \dfrac{x}{{121}} $
$ \Rightarrow {x^2} = 81 \times 121 $
Now the squares of $ 9 $ and $ 11 $ are $ 81 $ and $ 121 $ respectively so,
$ \Rightarrow {x^2} = {9^2} \times {11^2} = {(9 \times 11)^2} $
The fact that $ {\alpha ^2} = {\beta ^2} \Rightarrow \alpha = \beta $ gives us
$ x = 9 \times 11 $
The product of $ 9 $ and $ 11 $ gives us $ 99 $ so,
$ x = 99 $
Therefore, the mean proportion of the numbers given to us is $ 99 $ .
So, the correct answer is “ $ 99 $ ”.
Similarly for (b) we have
$ \dfrac{{1.8}}{x} = \dfrac{x}{{0.2}} $
$ \Rightarrow {x^2} = 1.8 \times 0.2 = 0.36 $
$ \Rightarrow {x^2} = {(0.6)^2} $
The fact that $ {\alpha ^2} = {\beta ^2} \Rightarrow \alpha = \beta $ gives us
$ x = 0.6 $
Therefore, the mean proportion of the numbers given to us is $ 0.6 $ .
So, the correct answer is “ $ 0.6 $ ”.
Same is for:
c) $ \dfrac{{\left( {\dfrac{2}{3}} \right)}}{x} = \dfrac{x}{{\left( {\dfrac{8}{{27}}} \right)}} $
$ \Rightarrow {x^2} = \dfrac{2}{3} \times \dfrac{8}{{27}} = \dfrac{{16}}{{81}} $
$ \Rightarrow {x^2} = {\left( {\dfrac{4}{9}} \right)^2} $
$ \Rightarrow x = \left( {\dfrac{4}{9}} \right) $
Therefore, the mean proportion of the numbers given to us is $ \dfrac{4}{9} $ .
So, the correct answer is “ $ \dfrac{4}{9} $ ”.
d) $ \dfrac{{0.32}}{x} = \dfrac{x}{{0.08}} $
$ \Rightarrow {x^2} = 0.032 \times 0.08 = 0.00256 $
$ \Rightarrow x = 0.016 $
Therefore, the mean proportion of the numbers given to us is $ 0.016 $ .
So, the correct answer is “ $ 0.016 $ ”.
e) $ \dfrac{{\left( {\dfrac{1}{{25}}} \right)}}{x} = \dfrac{x}{{\left( {\dfrac{1}{{16}}} \right)}} $
$ \Rightarrow {x^2} = \dfrac{1}{{25}} \times \dfrac{1}{{16}} = \dfrac{1}{{{5^2}}} \times \dfrac{1}{{{4^2}}} = {\left( {\dfrac{1}{5} \times \dfrac{1}{4}} \right)^2} $
$ \Rightarrow x = \dfrac{1}{5} \times \dfrac{1}{4} $
$ \Rightarrow x = \dfrac{1}{{20}} $
Therefore, the mean proportion of the numbers given to us is $ \dfrac{1}{{20}} $ .
So, the correct answer is “ $ \dfrac{1}{{20}} $ ”.
Note: While calculating the mean proportion $ x $ always try to simplify the numbers to small factors so that you can easily find the root of that number. Multiplying the numbers will result in a larger number whose root calculation then will be a messy work.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

What is the feminine gender of a stag class 8 english CBSE

How many ounces are in 500 mL class 8 maths CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

How many ten lakhs are in one crore-class-8-maths-CBSE
