
Find the mean of the first six multiples of $5$.
Answer
548.7k+ views
Hint: First of all, we will find the first six multiples of $5$ . Then, we will apply the formula of arithmetic mean on the first six multiples of $5$ . Then, by simplifying further we can evaluate the mean of the first six multiples of $5$.
Formula used: The arithmetic mean of ungrouped data: If ${x_1},{x_2},{x_3},...,{x_n}$ are $n$ observations of a variable $X$ , then the arithmetic mean is denoted by $\bar X$ and is defined as $\bar X = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$.
Complete step by step solution:
Firstly, we know that a multiple of a natural number is obtained by multiplying that number by any whole number.
Now, we need to find the first six multiples of $5$, which are
Multiples of $5$ are $5 \times 0$ , $5 \times 1$ , $5 \times 2$ , $5 \times 3$ , $5 \times 4$ , $5 \times 5$ , $5 \times 6$ , …
i.e. $0$ , $5$ , $\;10$ , $\;15$ , $\;20$ , $\;25$ , $\;30$ , …
But, we will consider non-zero multiples only, so, we have
First six multiples of $\;5$ : $5$ , $\;10$ , $\;15$ , $\;20$ , $\;25$ , $\;30$
Now, as we need to find the mean of the first six multiples of $5$ .
So, we take it as
$X$ : $5$ , $\;10$ , $\;15$ , $\;20$ , $\;25$ , $\;30$
Now, let $\bar X$ be the arithmetic mean of the observations.
As we know that, $\bar X = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$
$\Rightarrow \bar X = \dfrac{{5 + 10 + 15 + 20 + 25 + 30}}{6}$
$\Rightarrow \bar X = \dfrac{{105}}{6}$
Simplifying on R.H.S., we get
$\Rightarrow \bar X = 17.5$
The mean of the first six multiples of $5$ is $17.5$.
Note: Arithmetic mean is also called simply mean. The arithmetic mean of a set of observations is defined as the sum of all observations divided by the total number of observations. The method of finding the arithmetic mean depends on the kind of data that is given whether the data is grouped or ungrouped.
Formula used: The arithmetic mean of ungrouped data: If ${x_1},{x_2},{x_3},...,{x_n}$ are $n$ observations of a variable $X$ , then the arithmetic mean is denoted by $\bar X$ and is defined as $\bar X = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$.
Complete step by step solution:
Firstly, we know that a multiple of a natural number is obtained by multiplying that number by any whole number.
Now, we need to find the first six multiples of $5$, which are
Multiples of $5$ are $5 \times 0$ , $5 \times 1$ , $5 \times 2$ , $5 \times 3$ , $5 \times 4$ , $5 \times 5$ , $5 \times 6$ , …
i.e. $0$ , $5$ , $\;10$ , $\;15$ , $\;20$ , $\;25$ , $\;30$ , …
But, we will consider non-zero multiples only, so, we have
First six multiples of $\;5$ : $5$ , $\;10$ , $\;15$ , $\;20$ , $\;25$ , $\;30$
Now, as we need to find the mean of the first six multiples of $5$ .
So, we take it as
$X$ : $5$ , $\;10$ , $\;15$ , $\;20$ , $\;25$ , $\;30$
Now, let $\bar X$ be the arithmetic mean of the observations.
As we know that, $\bar X = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$
$\Rightarrow \bar X = \dfrac{{5 + 10 + 15 + 20 + 25 + 30}}{6}$
$\Rightarrow \bar X = \dfrac{{105}}{6}$
Simplifying on R.H.S., we get
$\Rightarrow \bar X = 17.5$
The mean of the first six multiples of $5$ is $17.5$.
Note: Arithmetic mean is also called simply mean. The arithmetic mean of a set of observations is defined as the sum of all observations divided by the total number of observations. The method of finding the arithmetic mean depends on the kind of data that is given whether the data is grouped or ungrouped.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

