
Find the maximum value of ${\left( {\dfrac{1}{x}} \right)^x}$.
(A) \[{\left( e \right)^e}\]
(B) \[{\left( e \right)^{\dfrac{1}{e}}}\]
(C) \[{\left( e \right)^{ - e}}\]
(D) \[{\left( {\dfrac{1}{e}} \right)^e}\]
Answer
507.6k+ views
Hint: Given problem tests the concepts of derivatives and their applications. These type questions can be easily solved if we keep in mind the concepts of maxima and minima. In the problem, we are required to find the maximum value of the function in the variable x, ${\left( {\dfrac{1}{x}} \right)^x}$. We do so by differentiating the function with respect to x and finding the critical points at which the function attains maximum or minimum values. Then, we use the second derivative test to check whether the critical point represents the minimum or maximum value of the function.
Complete step by step answer:
We have the function in x as ${\left( {\dfrac{1}{x}} \right)^x}$.
Let us assume the function ${\left( {\dfrac{1}{x}} \right)^x}$ to be equal to y.
So, $y = {\left( {\dfrac{1}{x}} \right)^x}$
Taking natural logarithm on both sides of the equation, we get,
\[\ln \left( y \right) = \ln {\left( {\dfrac{1}{x}} \right)^x}\]
Now, we know the property of logarithms as $\ln {a^x} = x\ln a$. So, we get,
\[ \Rightarrow \ln \left( y \right) = x\ln \left( {\dfrac{1}{x}} \right)\]
Now, we differentiate both sides of the above equation. So, we get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\ln \left( y \right)} \right] = \dfrac{d}{{dx}}\left[ {x\ln \left( {\dfrac{1}{x}} \right)} \right]\]
Now, we know that the derivative of $\ln x$ is $\left( {\dfrac{1}{x}} \right)$. So, we get,
\[ \Rightarrow \left( {\dfrac{1}{y}} \right)\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ {x\ln \left( {\dfrac{1}{x}} \right)} \right]\]
We know the product rule of differentiation $\dfrac{d}{{dx}}\left[ {f\left( x \right) \times g\left( x \right)} \right] = f\left( x \right) \times g'\left( x \right) + f'\left( x \right) \times g\left( x \right)$. So, we get,
\[ \Rightarrow \left( {\dfrac{1}{y}} \right)\dfrac{{dy}}{{dx}} = x\dfrac{d}{{dx}}\left[ {\ln \left( {\dfrac{1}{x}} \right)} \right] + \ln \left( {\dfrac{1}{x}} \right)\dfrac{{d\left( x \right)}}{{dx}}\]
Now, we know that derivative of x with respect to x is $1$. So, we get,
\[ \Rightarrow \left( {\dfrac{1}{y}} \right)\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{{\left( {\dfrac{1}{x}} \right)}} \times \dfrac{d}{{dx}}\left[ {\left( {\dfrac{1}{x}} \right)} \right] + \ln \left( {\dfrac{1}{x}} \right)\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = y\left[ {{x^2} \times \dfrac{{ - 1}}{{{x^2}}} + \ln \left( {\dfrac{1}{x}} \right)} \right]\]
We know the power rule of differentiation as $\dfrac{{d\left[ {{x^n}} \right]}}{{dx}} = n{x^{\left( {n - 1} \right)}}$. So, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = y\left[ {\ln \left( {\dfrac{1}{x}} \right) - 1} \right] - - - - \left( 1 \right)\]
Now, we substitute the value of y and equate the first derivative of the function to zero to find the critical points of the function. So, we get,
\[ \Rightarrow {\left( {\dfrac{1}{x}} \right)^x}\left[ {\ln \left( {\dfrac{1}{x}} \right) - 1} \right] = 0\]
Shifting the terms to right side of the equation, we get,
\[ \Rightarrow \ln \left( {\dfrac{1}{x}} \right) = 1\]
Taking exponential functions on both sides of the equation. We also know that ${e^{\ln x}} = x$. So, we get the equation as,
\[ \Rightarrow \left( {\dfrac{1}{x}} \right) = e\]
\[ \Rightarrow x = \dfrac{1}{e}\]
So, we get \[x = \dfrac{1}{e}\] as a critical point of the function.
Now, we find the second derivative of the function. From equation $\left( 1 \right)$, we have,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{dy}}{{dx}}\left[ {y\left( {\ln \left( {\dfrac{1}{x}} \right) - 1} \right)} \right]\]
Again, using the product rule of differentiation,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \left( {\ln \left( {\dfrac{1}{x}} \right) - 1} \right)\dfrac{{dy}}{{dx}} + y\dfrac{d}{{dx}}\left( {\ln \left( {\dfrac{1}{x}} \right) - 1} \right)\]
We know the value of $\dfrac{{dy}}{{dx}}$. So, we get,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \left( {\ln \left( {\dfrac{1}{x}} \right) - 1} \right) \times y\left[ {\ln \left( {\dfrac{1}{x}} \right) - 1} \right] + y\dfrac{d}{{dx}}\left( {\ln \left( {\dfrac{1}{x}} \right) - 1} \right)\]
Simplifying the expression, we get,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = y\left[ {{{\left( {\ln \left( {\dfrac{1}{x}} \right) - 1} \right)}^2} + \dfrac{1}{{\left( {\dfrac{1}{x}} \right)}}\left( {\dfrac{{ - 1}}{{{x^2}}}} \right)} \right]\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = y\left[ {{{\left( {\ln \left( {\dfrac{1}{x}} \right) - 1} \right)}^2} - \dfrac{1}{x}} \right]\]
Now, substituting the value of x as \[\dfrac{1}{e}\].
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {\left( {\dfrac{1}{{\left( {\dfrac{1}{e}} \right)}}} \right)^{\left( {\dfrac{1}{e}} \right)}}\left[ {{{\left( {\ln \left( {\dfrac{1}{{\left( {\dfrac{1}{e}} \right)}}} \right) - 1} \right)}^2} - \dfrac{1}{{\left( {\dfrac{1}{e}} \right)}}} \right]\]
Now, we know that \[\ln e = 1\]. So, we get,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {e^{\dfrac{1}{e}}}\left[ {{{\left( {\ln e - 1} \right)}^2} - e} \right]\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {e^{\dfrac{1}{e}}}\left[ {{{\left( {1 - 1} \right)}^2} - e} \right]\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - e \times {e^{\dfrac{1}{e}}}\]
So, the second derivative of the function is negative for \[x = \dfrac{1}{e}\]. So, \[x = \dfrac{1}{e}\] is the point of local maxima. So, the maximum value of function is attained at \[x = \dfrac{1}{e}\].
So, $y\left( {\dfrac{1}{e}} \right) = {\left( {\dfrac{1}{{\left( {\dfrac{1}{e}} \right)}}} \right)^{\left( {\dfrac{1}{e}} \right)}}$
$ \Rightarrow y\left( {\dfrac{1}{e}} \right) = {e^{\left( {\dfrac{1}{e}} \right)}}$
Therefore, the maximum value of the function ${\left( {\dfrac{1}{x}} \right)^x}$ is ${e^{\left( {\dfrac{1}{e}} \right)}}$.Option (B) is the correct option.
Note:
We can solve the problems involving the maxima and minima concept by two methods: the first derivative test and the second derivative test. The first derivative test helps in finding the local extremum points of the function. The second derivative test involves finding the local extremum points and then finding out which of them is local minima and which is local maxima.
Complete step by step answer:
We have the function in x as ${\left( {\dfrac{1}{x}} \right)^x}$.
Let us assume the function ${\left( {\dfrac{1}{x}} \right)^x}$ to be equal to y.
So, $y = {\left( {\dfrac{1}{x}} \right)^x}$
Taking natural logarithm on both sides of the equation, we get,
\[\ln \left( y \right) = \ln {\left( {\dfrac{1}{x}} \right)^x}\]
Now, we know the property of logarithms as $\ln {a^x} = x\ln a$. So, we get,
\[ \Rightarrow \ln \left( y \right) = x\ln \left( {\dfrac{1}{x}} \right)\]
Now, we differentiate both sides of the above equation. So, we get,
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\ln \left( y \right)} \right] = \dfrac{d}{{dx}}\left[ {x\ln \left( {\dfrac{1}{x}} \right)} \right]\]
Now, we know that the derivative of $\ln x$ is $\left( {\dfrac{1}{x}} \right)$. So, we get,
\[ \Rightarrow \left( {\dfrac{1}{y}} \right)\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ {x\ln \left( {\dfrac{1}{x}} \right)} \right]\]
We know the product rule of differentiation $\dfrac{d}{{dx}}\left[ {f\left( x \right) \times g\left( x \right)} \right] = f\left( x \right) \times g'\left( x \right) + f'\left( x \right) \times g\left( x \right)$. So, we get,
\[ \Rightarrow \left( {\dfrac{1}{y}} \right)\dfrac{{dy}}{{dx}} = x\dfrac{d}{{dx}}\left[ {\ln \left( {\dfrac{1}{x}} \right)} \right] + \ln \left( {\dfrac{1}{x}} \right)\dfrac{{d\left( x \right)}}{{dx}}\]
Now, we know that derivative of x with respect to x is $1$. So, we get,
\[ \Rightarrow \left( {\dfrac{1}{y}} \right)\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{{\left( {\dfrac{1}{x}} \right)}} \times \dfrac{d}{{dx}}\left[ {\left( {\dfrac{1}{x}} \right)} \right] + \ln \left( {\dfrac{1}{x}} \right)\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = y\left[ {{x^2} \times \dfrac{{ - 1}}{{{x^2}}} + \ln \left( {\dfrac{1}{x}} \right)} \right]\]
We know the power rule of differentiation as $\dfrac{{d\left[ {{x^n}} \right]}}{{dx}} = n{x^{\left( {n - 1} \right)}}$. So, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = y\left[ {\ln \left( {\dfrac{1}{x}} \right) - 1} \right] - - - - \left( 1 \right)\]
Now, we substitute the value of y and equate the first derivative of the function to zero to find the critical points of the function. So, we get,
\[ \Rightarrow {\left( {\dfrac{1}{x}} \right)^x}\left[ {\ln \left( {\dfrac{1}{x}} \right) - 1} \right] = 0\]
Shifting the terms to right side of the equation, we get,
\[ \Rightarrow \ln \left( {\dfrac{1}{x}} \right) = 1\]
Taking exponential functions on both sides of the equation. We also know that ${e^{\ln x}} = x$. So, we get the equation as,
\[ \Rightarrow \left( {\dfrac{1}{x}} \right) = e\]
\[ \Rightarrow x = \dfrac{1}{e}\]
So, we get \[x = \dfrac{1}{e}\] as a critical point of the function.
Now, we find the second derivative of the function. From equation $\left( 1 \right)$, we have,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{dy}}{{dx}}\left[ {y\left( {\ln \left( {\dfrac{1}{x}} \right) - 1} \right)} \right]\]
Again, using the product rule of differentiation,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \left( {\ln \left( {\dfrac{1}{x}} \right) - 1} \right)\dfrac{{dy}}{{dx}} + y\dfrac{d}{{dx}}\left( {\ln \left( {\dfrac{1}{x}} \right) - 1} \right)\]
We know the value of $\dfrac{{dy}}{{dx}}$. So, we get,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \left( {\ln \left( {\dfrac{1}{x}} \right) - 1} \right) \times y\left[ {\ln \left( {\dfrac{1}{x}} \right) - 1} \right] + y\dfrac{d}{{dx}}\left( {\ln \left( {\dfrac{1}{x}} \right) - 1} \right)\]
Simplifying the expression, we get,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = y\left[ {{{\left( {\ln \left( {\dfrac{1}{x}} \right) - 1} \right)}^2} + \dfrac{1}{{\left( {\dfrac{1}{x}} \right)}}\left( {\dfrac{{ - 1}}{{{x^2}}}} \right)} \right]\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = y\left[ {{{\left( {\ln \left( {\dfrac{1}{x}} \right) - 1} \right)}^2} - \dfrac{1}{x}} \right]\]
Now, substituting the value of x as \[\dfrac{1}{e}\].
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {\left( {\dfrac{1}{{\left( {\dfrac{1}{e}} \right)}}} \right)^{\left( {\dfrac{1}{e}} \right)}}\left[ {{{\left( {\ln \left( {\dfrac{1}{{\left( {\dfrac{1}{e}} \right)}}} \right) - 1} \right)}^2} - \dfrac{1}{{\left( {\dfrac{1}{e}} \right)}}} \right]\]
Now, we know that \[\ln e = 1\]. So, we get,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {e^{\dfrac{1}{e}}}\left[ {{{\left( {\ln e - 1} \right)}^2} - e} \right]\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {e^{\dfrac{1}{e}}}\left[ {{{\left( {1 - 1} \right)}^2} - e} \right]\]
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - e \times {e^{\dfrac{1}{e}}}\]
So, the second derivative of the function is negative for \[x = \dfrac{1}{e}\]. So, \[x = \dfrac{1}{e}\] is the point of local maxima. So, the maximum value of function is attained at \[x = \dfrac{1}{e}\].
So, $y\left( {\dfrac{1}{e}} \right) = {\left( {\dfrac{1}{{\left( {\dfrac{1}{e}} \right)}}} \right)^{\left( {\dfrac{1}{e}} \right)}}$
$ \Rightarrow y\left( {\dfrac{1}{e}} \right) = {e^{\left( {\dfrac{1}{e}} \right)}}$
Therefore, the maximum value of the function ${\left( {\dfrac{1}{x}} \right)^x}$ is ${e^{\left( {\dfrac{1}{e}} \right)}}$.Option (B) is the correct option.
Note:
We can solve the problems involving the maxima and minima concept by two methods: the first derivative test and the second derivative test. The first derivative test helps in finding the local extremum points of the function. The second derivative test involves finding the local extremum points and then finding out which of them is local minima and which is local maxima.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

