
Find the maximum or minimum value of the quadratic expression \[2x-7-5{{x}^{2}}\].
Answer
585.9k+ views
Hint: We know that the minimum or maximum value of a quadratic expression \[y=a{{x}^{2}}+bx+c\] is \[\left( \dfrac{4ac-{{b}^{2}}}{4a} \right)\] at \[x=\dfrac{-b}{2a}\]. If $a <0$, then the quadratic expression will have a maximum value. We will compare \[2x-7-5{{x}^{2}}\] with \[a{{x}^{2}}+bx+c\]. Now, we will get the values of a, b and c. With these values of a, b and c, we will find the minimum or maximum values of \[2x-7-5{{x}^{2}}\].
Complete step-by-step solution -
Before solving the question, we should whether a quadratic expression will have maximum value (or) minimum value.
For a quadratic expression \[y=a{{x}^{2}}+bx+c\], if $a< 0$ then the quadratic expression will have maximum value. The maximum value of \[y=a{{x}^{2}}+bx+c\] obtains at \[x=\dfrac{-b}{2a}\]. The maximum value of quadratic expression is \[\left( \dfrac{4ac-{{b}^{2}}}{4a} \right)\].
In the similar way, if $a >0$ then the quadratic expression will have minimum value. The minimum value of \[y=a{{x}^{2}}+bx+c\] obtains at \[x=\dfrac{-b}{2a}\]. The minimum value of quadratic expression is \[\left( \dfrac{4ac-{{b}^{2}}}{4a} \right)\].
The given expression in this question is \[2x-7-5{{x}^{2}}\].
Let us assume \[y=2x-7-5{{x}^{2}}\]
By rewriting the quadratic expression,
\[y=-5{{x}^{2}}+2x-7\]
Now we should compare \[y=-5{{x}^{2}}+2x-7\] with \[y=a{{x}^{2}}+bx+c\].
\[\begin{align}
& a=-5.....(1) \\
& b=2........(2) \\
& c=-7......(3) \\
\end{align}\]
We know that if $a <0$, then the quadratic expression will have a maximum value.
From equation (1), it is clear that the value of a for \[y=-5{{x}^{2}}+2x-7\] is less than zero.
So, the quadratic expression \[-5{{x}^{2}}+2x-7\] will have a maximum value.
We know that the minimum value for a quadratic expression will obtain at \[x=\dfrac{-b}{2a}\].
From equation (2) and equation (3), the maximum value of quadratic expression will obtain at
\[x=\dfrac{-2}{2(-5)}=\dfrac{-2}{-10}=\dfrac{2}{10}=\dfrac{1}{5}.....(5)\].
We know that the maximum value of quadratic expression is \[\left( \dfrac{4ac-{{b}^{2}}}{4a} \right)\].
So, the maximum value of quadratic expression is
\[\dfrac{4ac-{{b}^{2}}}{4a}=\dfrac{4(-5)(-7)-{{(2)}^{2}}}{4(-5)}=\dfrac{4(35)-4}{-20}=\dfrac{140-4}{-20}=\dfrac{136}{-20}=\dfrac{-68}{10}=\dfrac{-34}{5}\].
Hence, the maximum value of \[2x-7-5{{x}^{2}}\] is \[\dfrac{-34}{5}\].
Note: There is an alternative method to solve this problem.
A function f(x) is said to have a maximum or minimum value at the value of x where $f'(x) =0$.
The value of x where f`(x)=0 is said to have a maximum value if $f”(x) <0$.
The value of x where f`(x)=0 is said to have a minimum value if $f”(x) >0$.
Let us assume \[f(x)=2x-7-5{{x}^{2}}......(1)\] .
\[\Rightarrow f’(x)=\dfrac{d}{dx}(2x-7-5{{x}^{2}})=2-10x\]
We have to find the value of x where f`(x) is equal to 0.
\[\begin{align}
& f’(x)=2-10x=0 \\
& \Rightarrow 10x=2 \\
& \Rightarrow x=\dfrac{1}{5}......(2) \\
\end{align}\]
At \[x=\dfrac{1}{5}\], \[f(x)=2x-7-5{{x}^{2}}\] will have a maximum (or) minimum value.
\[f”(x)=\dfrac{{{d}^{2}}}{d{{x}^{2}}}(2x-7-5{{x}^{2}})=\dfrac{d}{dx}\dfrac{d}{dx}(2x-7-5{{x}^{2}})=\dfrac{d}{dx}(2-10x)=-10\]
As $f''(x) <0$, so f(x) will have maximum value at \[x=\dfrac{1}{5}\].
So, substitute equation (2) in equation (1).
\[f(x)=2\left( \dfrac{1}{5} \right)-7-5{{\left( \dfrac{1}{5} \right)}^{2}}=\dfrac{-34}{5}\].
Hence, the maximum value of \[2x-7-5{{x}^{2}}\] is equal to \[\dfrac{-34}{5}\].
Complete step-by-step solution -
Before solving the question, we should whether a quadratic expression will have maximum value (or) minimum value.
For a quadratic expression \[y=a{{x}^{2}}+bx+c\], if $a< 0$ then the quadratic expression will have maximum value. The maximum value of \[y=a{{x}^{2}}+bx+c\] obtains at \[x=\dfrac{-b}{2a}\]. The maximum value of quadratic expression is \[\left( \dfrac{4ac-{{b}^{2}}}{4a} \right)\].
In the similar way, if $a >0$ then the quadratic expression will have minimum value. The minimum value of \[y=a{{x}^{2}}+bx+c\] obtains at \[x=\dfrac{-b}{2a}\]. The minimum value of quadratic expression is \[\left( \dfrac{4ac-{{b}^{2}}}{4a} \right)\].
The given expression in this question is \[2x-7-5{{x}^{2}}\].
Let us assume \[y=2x-7-5{{x}^{2}}\]
By rewriting the quadratic expression,
\[y=-5{{x}^{2}}+2x-7\]
Now we should compare \[y=-5{{x}^{2}}+2x-7\] with \[y=a{{x}^{2}}+bx+c\].
\[\begin{align}
& a=-5.....(1) \\
& b=2........(2) \\
& c=-7......(3) \\
\end{align}\]
We know that if $a <0$, then the quadratic expression will have a maximum value.
From equation (1), it is clear that the value of a for \[y=-5{{x}^{2}}+2x-7\] is less than zero.
So, the quadratic expression \[-5{{x}^{2}}+2x-7\] will have a maximum value.
We know that the minimum value for a quadratic expression will obtain at \[x=\dfrac{-b}{2a}\].
From equation (2) and equation (3), the maximum value of quadratic expression will obtain at
\[x=\dfrac{-2}{2(-5)}=\dfrac{-2}{-10}=\dfrac{2}{10}=\dfrac{1}{5}.....(5)\].
We know that the maximum value of quadratic expression is \[\left( \dfrac{4ac-{{b}^{2}}}{4a} \right)\].
So, the maximum value of quadratic expression is
\[\dfrac{4ac-{{b}^{2}}}{4a}=\dfrac{4(-5)(-7)-{{(2)}^{2}}}{4(-5)}=\dfrac{4(35)-4}{-20}=\dfrac{140-4}{-20}=\dfrac{136}{-20}=\dfrac{-68}{10}=\dfrac{-34}{5}\].
Hence, the maximum value of \[2x-7-5{{x}^{2}}\] is \[\dfrac{-34}{5}\].
Note: There is an alternative method to solve this problem.
A function f(x) is said to have a maximum or minimum value at the value of x where $f'(x) =0$.
The value of x where f`(x)=0 is said to have a maximum value if $f”(x) <0$.
The value of x where f`(x)=0 is said to have a minimum value if $f”(x) >0$.
Let us assume \[f(x)=2x-7-5{{x}^{2}}......(1)\] .
\[\Rightarrow f’(x)=\dfrac{d}{dx}(2x-7-5{{x}^{2}})=2-10x\]
We have to find the value of x where f`(x) is equal to 0.
\[\begin{align}
& f’(x)=2-10x=0 \\
& \Rightarrow 10x=2 \\
& \Rightarrow x=\dfrac{1}{5}......(2) \\
\end{align}\]
At \[x=\dfrac{1}{5}\], \[f(x)=2x-7-5{{x}^{2}}\] will have a maximum (or) minimum value.
\[f”(x)=\dfrac{{{d}^{2}}}{d{{x}^{2}}}(2x-7-5{{x}^{2}})=\dfrac{d}{dx}\dfrac{d}{dx}(2x-7-5{{x}^{2}})=\dfrac{d}{dx}(2-10x)=-10\]
As $f''(x) <0$, so f(x) will have maximum value at \[x=\dfrac{1}{5}\].
So, substitute equation (2) in equation (1).
\[f(x)=2\left( \dfrac{1}{5} \right)-7-5{{\left( \dfrac{1}{5} \right)}^{2}}=\dfrac{-34}{5}\].
Hence, the maximum value of \[2x-7-5{{x}^{2}}\] is equal to \[\dfrac{-34}{5}\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

