
Find the matrices $X$ and $Y$ , if $2X - Y = \left[ {\begin{array}{*{20}{c}}
6&{ - 6}&0 \\
{ - 4}&2&1
\end{array}} \right]$ and $X + 2Y = \left[ {\begin{array}{*{20}{c}}
3&2&5 \\
{ - 2}&1&{ - 7}
\end{array}} \right]$
Answer
483.3k+ views
Hint: This problem can be treated as a linear equation in two variables in form of $X$ and $Y$ and solved just like how we solve a linear equation
Complete step-by-step answer:
The given matrices are
$2X - Y = \left[ {\begin{array}{*{20}{c}}
6&{ - 6}&0 \\
{ - 4}&2&1
\end{array}} \right] \cdots \left( 1 \right)$
$X + 2Y = \left[ {\begin{array}{*{20}{c}}
3&2&5 \\
{ - 2}&1&{ - 7}
\end{array}} \right] \cdots \left( 2 \right)$
For performing the addition or subtraction of two matrices, the order of the matrices should be the same . The order of both the matrices is $2 \times 3$ .
Let’s suppose the matrices be $X = \left[ {\begin{array}{*{20}{c}}
p&q&r \\
s&t&u
\end{array}} \right]$ and $Y = \left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f
\end{array}} \right]$
After analyzing the two equations, it is clear that matrix $Y$ can be eliminated for the calculation of matrix $X$ by multiplying equation (1) by 2 and adding equation (1) and (2).
Multiplying equation (1) by (2),
$2\left( {2X - Y} \right) = 2\left[ {\begin{array}{*{20}{c}}
6&{ - 6}&0 \\
{ - 4}&2&1
\end{array}} \right]$
If a matrix is multiplied by a scalar quantity, then the scalar is to be multiplied by each and every term of the matrix as shown below,
$4X - 2Y = \left[ {\begin{array}{*{20}{c}}
{12}&{ - 12}&0 \\
{ - 8}&4&2
\end{array}} \right] \cdots \left( 3 \right)$
Adding equation (2 ) and (3)
\[\left( {X + 2Y} \right) + \left( {4X - 2Y} \right) = \left[ {\begin{array}{*{20}{c}}
3&2&5 \\
{ - 2}&1&{ - 7}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{12}&{ - 12}&0 \\
{ - 8}&4&2
\end{array}} \right]\]
For adding the two matrices , add their corresponding terms.
$\begin{gathered}
5X = \left[ {\begin{array}{*{20}{c}}
{3 + 12}&{2 - 12}&{5 - 0} \\
{ - 2 - 8}&{1 + 4}&{ - 7 + 2}
\end{array}} \right] \\
5X = \left[ {\begin{array}{*{20}{c}}
{15}&{ - 10}&5 \\
{ - 10}&5&{ - 5}
\end{array}} \right] \cdots \left( 4 \right) \\
\end{gathered} $
Now it is clear that in equation (4), we can take out 5 as a common factor.
$5X = 5\left[ {\begin{array}{*{20}{c}}
3&{ - 2}&1 \\
{ - 2}&1&{ - 1}
\end{array}} \right] \cdots \left( 5 \right)$
Cancelling 5 from both sides of LHS and RHS in equation (5), matrix $X$ is obtained as
$X = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&1 \\
{ - 2}&1&{ - 1}
\end{array}} \right] \cdots \left( 6 \right)$
Substitute the value of matrix $X$ in equation (1),
\[2\left[ {\begin{array}{*{20}{c}}
3&{ - 2}&1 \\
{ - 2}&1&{ - 1}
\end{array}} \right] - Y = \left[ {\begin{array}{*{20}{c}}
6&{ - 6}&0 \\
{ - 4}&2&1
\end{array}} \right] \cdots \left( 7 \right)\]
Multiply all the terms of the matrix $X$ by 2 as given in the equation (7)
\[\left[ {\begin{array}{*{20}{c}}
6&{ - 4}&2 \\
{ - 4}&2&{ - 2}
\end{array}} \right] - Y = \left[ {\begin{array}{*{20}{c}}
6&{ - 6}&0 \\
{ - 4}&2&1
\end{array}} \right]\]
Now rearrange the terms and calculate the value of matrix $Y$ as,
$Y = \left[ {\begin{array}{*{20}{c}}
6&{ - 4}&2 \\
{ - 4}&2&{ - 2}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
6&{ - 6}&0 \\
{ - 4}&2&1
\end{array}} \right]$
Now subtract the 2 matrices by subtracting their corresponding terms,
$Y = \left[ {\begin{array}{*{20}{c}}
0&2&2 \\
0&0&{ - 3}
\end{array}} \right]$
Hence, the value of matrix $X = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&1 \\
{ - 2}&1&{ - 1}
\end{array}} \right]$ and $Y = \left[ {\begin{array}{*{20}{c}}
0&2&2 \\
0&0&{ - 3}
\end{array}} \right]$..
Note: The important concepts to be remembered are
1)Two matrices can be added or subtracted only when they have the same order.
2)Multiplication of a matrix by a scalar, leads to multiplication of its terms.
Complete step-by-step answer:
The given matrices are
$2X - Y = \left[ {\begin{array}{*{20}{c}}
6&{ - 6}&0 \\
{ - 4}&2&1
\end{array}} \right] \cdots \left( 1 \right)$
$X + 2Y = \left[ {\begin{array}{*{20}{c}}
3&2&5 \\
{ - 2}&1&{ - 7}
\end{array}} \right] \cdots \left( 2 \right)$
For performing the addition or subtraction of two matrices, the order of the matrices should be the same . The order of both the matrices is $2 \times 3$ .
Let’s suppose the matrices be $X = \left[ {\begin{array}{*{20}{c}}
p&q&r \\
s&t&u
\end{array}} \right]$ and $Y = \left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f
\end{array}} \right]$
After analyzing the two equations, it is clear that matrix $Y$ can be eliminated for the calculation of matrix $X$ by multiplying equation (1) by 2 and adding equation (1) and (2).
Multiplying equation (1) by (2),
$2\left( {2X - Y} \right) = 2\left[ {\begin{array}{*{20}{c}}
6&{ - 6}&0 \\
{ - 4}&2&1
\end{array}} \right]$
If a matrix is multiplied by a scalar quantity, then the scalar is to be multiplied by each and every term of the matrix as shown below,
$4X - 2Y = \left[ {\begin{array}{*{20}{c}}
{12}&{ - 12}&0 \\
{ - 8}&4&2
\end{array}} \right] \cdots \left( 3 \right)$
Adding equation (2 ) and (3)
\[\left( {X + 2Y} \right) + \left( {4X - 2Y} \right) = \left[ {\begin{array}{*{20}{c}}
3&2&5 \\
{ - 2}&1&{ - 7}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{12}&{ - 12}&0 \\
{ - 8}&4&2
\end{array}} \right]\]
For adding the two matrices , add their corresponding terms.
$\begin{gathered}
5X = \left[ {\begin{array}{*{20}{c}}
{3 + 12}&{2 - 12}&{5 - 0} \\
{ - 2 - 8}&{1 + 4}&{ - 7 + 2}
\end{array}} \right] \\
5X = \left[ {\begin{array}{*{20}{c}}
{15}&{ - 10}&5 \\
{ - 10}&5&{ - 5}
\end{array}} \right] \cdots \left( 4 \right) \\
\end{gathered} $
Now it is clear that in equation (4), we can take out 5 as a common factor.
$5X = 5\left[ {\begin{array}{*{20}{c}}
3&{ - 2}&1 \\
{ - 2}&1&{ - 1}
\end{array}} \right] \cdots \left( 5 \right)$
Cancelling 5 from both sides of LHS and RHS in equation (5), matrix $X$ is obtained as
$X = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&1 \\
{ - 2}&1&{ - 1}
\end{array}} \right] \cdots \left( 6 \right)$
Substitute the value of matrix $X$ in equation (1),
\[2\left[ {\begin{array}{*{20}{c}}
3&{ - 2}&1 \\
{ - 2}&1&{ - 1}
\end{array}} \right] - Y = \left[ {\begin{array}{*{20}{c}}
6&{ - 6}&0 \\
{ - 4}&2&1
\end{array}} \right] \cdots \left( 7 \right)\]
Multiply all the terms of the matrix $X$ by 2 as given in the equation (7)
\[\left[ {\begin{array}{*{20}{c}}
6&{ - 4}&2 \\
{ - 4}&2&{ - 2}
\end{array}} \right] - Y = \left[ {\begin{array}{*{20}{c}}
6&{ - 6}&0 \\
{ - 4}&2&1
\end{array}} \right]\]
Now rearrange the terms and calculate the value of matrix $Y$ as,
$Y = \left[ {\begin{array}{*{20}{c}}
6&{ - 4}&2 \\
{ - 4}&2&{ - 2}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
6&{ - 6}&0 \\
{ - 4}&2&1
\end{array}} \right]$
Now subtract the 2 matrices by subtracting their corresponding terms,
$Y = \left[ {\begin{array}{*{20}{c}}
0&2&2 \\
0&0&{ - 3}
\end{array}} \right]$
Hence, the value of matrix $X = \left[ {\begin{array}{*{20}{c}}
3&{ - 2}&1 \\
{ - 2}&1&{ - 1}
\end{array}} \right]$ and $Y = \left[ {\begin{array}{*{20}{c}}
0&2&2 \\
0&0&{ - 3}
\end{array}} \right]$..
Note: The important concepts to be remembered are
1)Two matrices can be added or subtracted only when they have the same order.
2)Multiplication of a matrix by a scalar, leads to multiplication of its terms.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.
