
How do you find the Maclaurin series of $f\left( x \right)=\ln \left( 1+{{x}^{2}} \right)$?
Answer
558.3k+ views
Hint: In this problem we need to calculate the Maclaurin series for the given equation. We know that the Maclaurin series is nothing but the Tylor series expansion of a function about $0$. Mathematically we can write it as $f\left( x \right)=f\left( 0 \right)+{{f}^{'}}\left( 0 \right)x+\dfrac{{{f}^{''}}\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{{{f}^{\left( 3 \right)}}\left( 0 \right)}{3!}{{x}^{3}}+...+\dfrac{{{f}^{\left( n \right)}}\left( 0 \right)}{n!}{{x}^{n}}+...$. To calculate the Maclaurin series, we need to calculate the first, second, third, ${{n}^{th}}$ derivative of the given equation. After finding the derivatives we need to calculate the value of derivatives at zero. The above process is somewhat lengthy and not an easy process to do. But we need to follow this process to get the Maclaurin series. For some type of function, the Maclaurin series is already defined and we are free to use them. We have the Maclaurin series for the function $\ln \left( 1+x \right)$. So, we will use the Maclaurin series of $\ln \left( 1+x \right)$ to calculate the Maclaurin series of a given function and we will simplify the obtained equation to get the required result.
Complete step-by-step solution:
Given that, $f\left( x \right)=\ln \left( 1+{{x}^{2}} \right)$.
We have Maclaurin series for the function $\ln \left( 1+x \right)$ as
$\begin{align}
& \ln \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-... \\
& \Rightarrow \ln \left( 1+x \right)=\sum\limits_{k=1}^{n}{\left( \dfrac{{{\left( -1 \right)}^{k+1}}{{x}^{k}}}{k} \right)} \\
\end{align}$
From this equation the Maclaurin series of the given function is calculated by substituting the variable $x$ with ${{x}^{2}}$, then we will get
$\begin{align}
& f\left( x \right)=\ln \left( 1+{{x}^{2}} \right) \\
& \Rightarrow f\left( x \right)={{\left( {{x}^{2}} \right)}^{1}}-\dfrac{{{\left( {{x}^{2}} \right)}^{2}}}{2}+\dfrac{{{\left( {{x}^{2}} \right)}^{3}}}{3}-.... \\
\end{align}$
Simplifying the above equation, then we will get
$\Rightarrow f\left( x \right)={{x}^{2}}-\dfrac{{{x}^{4}}}{2}+\dfrac{{{x}^{6}}}{3}-.....$
We can also write the above expression as
$\Rightarrow f\left( x \right)=\sum\limits_{k=1}^{n}{\left( \dfrac{{{\left( -1 \right)}^{k+1}}{{\left( {{x}^{2}} \right)}^{k}}}{k} \right)}$
Note: In this problem we have used the Maclaurin series of function $\ln \left( 1+x \right)$ which is predefined. We have Maclaurin functions for some of the remaining functions also. For example
${{e}^{x}}=\sum\limits_{n=0}^{\infty }{\dfrac{{{x}^{n}}}{n!}}=1+x+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+....$.
$\cos x=\sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}{{x}^{2n}}}{\left( 2n \right)!}}=1-\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{4}}}{4!}-\dfrac{{{x}^{6}}}{6!}+.....$.
$\sin x=\sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}{{x}^{2n+1}}}{\left( 2n+1 \right)!}}=x-\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{5}}}{5!}-\dfrac{{{x}^{7}}}{7!}+.....$.
So, we can use the above formulas directly when they are in need.
Complete step-by-step solution:
Given that, $f\left( x \right)=\ln \left( 1+{{x}^{2}} \right)$.
We have Maclaurin series for the function $\ln \left( 1+x \right)$ as
$\begin{align}
& \ln \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-... \\
& \Rightarrow \ln \left( 1+x \right)=\sum\limits_{k=1}^{n}{\left( \dfrac{{{\left( -1 \right)}^{k+1}}{{x}^{k}}}{k} \right)} \\
\end{align}$
From this equation the Maclaurin series of the given function is calculated by substituting the variable $x$ with ${{x}^{2}}$, then we will get
$\begin{align}
& f\left( x \right)=\ln \left( 1+{{x}^{2}} \right) \\
& \Rightarrow f\left( x \right)={{\left( {{x}^{2}} \right)}^{1}}-\dfrac{{{\left( {{x}^{2}} \right)}^{2}}}{2}+\dfrac{{{\left( {{x}^{2}} \right)}^{3}}}{3}-.... \\
\end{align}$
Simplifying the above equation, then we will get
$\Rightarrow f\left( x \right)={{x}^{2}}-\dfrac{{{x}^{4}}}{2}+\dfrac{{{x}^{6}}}{3}-.....$
We can also write the above expression as
$\Rightarrow f\left( x \right)=\sum\limits_{k=1}^{n}{\left( \dfrac{{{\left( -1 \right)}^{k+1}}{{\left( {{x}^{2}} \right)}^{k}}}{k} \right)}$
Note: In this problem we have used the Maclaurin series of function $\ln \left( 1+x \right)$ which is predefined. We have Maclaurin functions for some of the remaining functions also. For example
${{e}^{x}}=\sum\limits_{n=0}^{\infty }{\dfrac{{{x}^{n}}}{n!}}=1+x+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+....$.
$\cos x=\sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}{{x}^{2n}}}{\left( 2n \right)!}}=1-\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{4}}}{4!}-\dfrac{{{x}^{6}}}{6!}+.....$.
$\sin x=\sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}{{x}^{2n+1}}}{\left( 2n+1 \right)!}}=x-\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{5}}}{5!}-\dfrac{{{x}^{7}}}{7!}+.....$.
So, we can use the above formulas directly when they are in need.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

