
How do you find the Maclaurin series of $f\left( x \right) = \cosh \left( x \right)$?
Answer
544.2k+ views
Hint: Given a trigonometric expression. We have to find the Maclaurin series for the expression. We will first apply the expansion of the Maclaurin series. Then, we will find the derivative of the function at $x = 0$.
Formula used:
The expansion of the Taylor series is given by:
$f\left( a \right) + \dfrac{{f'\left( a \right)}}{{1!}}\left( {x - a} \right) + \dfrac{{f''\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + \dfrac{{f'''\left( a \right)}}{{3!}}{\left( {x - a} \right)^3} + \ldots $
The sigma notation of the series is given by:
\[\sum\limits_{n = 0}^\infty {\dfrac{{{f^n}\left( a \right)}}{{n!}}{{\left( {x - a} \right)}^n}} \]
The series is known as Maclaurin series when $a = 0$
Complete step by step solution:
We are given the function, $f\left( x \right) = \cosh \left( x \right)$
First, we will use the Taylor series to expand the function.
$ \Rightarrow f\left( a \right) + \dfrac{{f'\left( a \right)}}{{1!}}\left( {x - a} \right) + \dfrac{{f''\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + \dfrac{{f'''\left( a \right)}}{{3!}}{\left( {x - a} \right)^3} + \ldots $
Now, we will write the Maclaurin series by substituting $a = 0$
$ \Rightarrow f\left( 0 \right) + \dfrac{{f'\left( 0 \right)}}{{1!}}\left( {x - 0} \right) + \dfrac{{f''\left( 0 \right)}}{{2!}}{\left( {x - 0} \right)^2} + \dfrac{{f'''\left( 0 \right)}}{{3!}}{\left( {x - 0} \right)^3} + \ldots $
Simplifying the expression, we get:
$ \Rightarrow f\left( 0 \right) + \dfrac{{f'\left( 0 \right)}}{{1!}}\left( x \right) + \dfrac{{f''\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{f'''\left( 0 \right)}}{{3!}}{x^3} + \ldots $
Now, we find the value of $f\left( 0 \right)$ by substituting zero for $x$ in the$f\left( x \right)$
$ \Rightarrow f\left( 0 \right) = \cos 0^\circ $
$ \Rightarrow f\left( 0 \right) = 1$
Now, we will find the value of $f'\left( x \right)$by differentiating the function, $f\left( x \right)$
\[ \Rightarrow \cosh x = - \sinh x\]
Now compute the value of $f'\left( 0 \right)$ by substituting zero for $x$ in $f'\left( x \right)$
$ \Rightarrow f'\left( 0 \right) = - \sin 0$
Now, substitute zero for $\sin 0$
$ \Rightarrow f'\left( 0 \right) = 0$
Now, we will find the second derivative of the function.
\[ \Rightarrow f''\left( x \right) = {\left( { - \sinh x} \right)^{\prime \prime }}\]
\[ \Rightarrow f''\left( x \right) = - \cosh x\]
Now compute the value of $f''\left( 0 \right)$ by substituting zero for $x$ in $f''\left( x \right)$
$ \Rightarrow f''\left( 0 \right) = - \cos 0$
Now, substitute one for $\cos 0$
$ \Rightarrow f''\left( 0 \right) = - 1$
Now, we will find the third derivative of the function.
\[ \Rightarrow f'''\left( x \right) = {\left( { - \cosh x} \right)^{\prime \prime \prime }}\]
\[ \Rightarrow f'''\left( x \right) = \sinh x\]
Now compute the value of $f'''\left( 0 \right)$ by substituting zero for $x$ in $f'''\left( x \right)$
$ \Rightarrow f'''\left( 0 \right) = \sin 0$
Now, substitute zero for $\sin 0$
$ \Rightarrow f'''\left( 0 \right) = 0$
Now, we will find the value of ${f^4}\left( x \right)$.
\[ \Rightarrow {f^4}\left( x \right) = {\left( {\sinh x} \right)^\prime }^{\prime \prime \prime }\]
\[ \Rightarrow {f^4}\left( x \right) = \cosh x\]
Now compute the value of ${f^4}\left( 0 \right)$ by substituting zero for $x$ in ${f^4}\left( x \right)$
$ \Rightarrow {f^4}\left( 0 \right) = \cos 0$
$ \Rightarrow {f^4}\left( 0 \right) = 1$
Now, substitute the values in the Maclaurin series, we get:
$ \Rightarrow 1 + \dfrac{0}{{1!}}\left( x \right) - \dfrac{1}{{2!}}{x^2} + \dfrac{0}{{3!}}{x^3} + \dfrac{1}{{4!}}{x^4} \ldots $
$ \Rightarrow 1 + 0 - \dfrac{{{x^2}}}{{2!}} + 0 + \dfrac{{{x^4}}}{{4!}} + \ldots $
$ \Rightarrow 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} + \ldots $
Hence, the Maclaurin series for $f\left( x \right) = \cosh \left( x \right)$ is $1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} + \ldots $
Note: Please note that the Taylor series is given by:
$f\left( a \right) + \dfrac{{f'\left( a \right)}}{{1!}}\left( {x - a} \right) + \dfrac{{f''\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + \dfrac{{f'''\left( a \right)}}{{3!}}{\left( {x - a} \right)^3} + \ldots $
The Maclaurin series is a special occurrence of Taylor series in which the series is obtained by substituting $a = 0$. The Taylor series is an expansion of a function about a particular point and a one dimensional series which is an expansion of real function about the point is known as Maclaurin series.
Formula used:
The expansion of the Taylor series is given by:
$f\left( a \right) + \dfrac{{f'\left( a \right)}}{{1!}}\left( {x - a} \right) + \dfrac{{f''\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + \dfrac{{f'''\left( a \right)}}{{3!}}{\left( {x - a} \right)^3} + \ldots $
The sigma notation of the series is given by:
\[\sum\limits_{n = 0}^\infty {\dfrac{{{f^n}\left( a \right)}}{{n!}}{{\left( {x - a} \right)}^n}} \]
The series is known as Maclaurin series when $a = 0$
Complete step by step solution:
We are given the function, $f\left( x \right) = \cosh \left( x \right)$
First, we will use the Taylor series to expand the function.
$ \Rightarrow f\left( a \right) + \dfrac{{f'\left( a \right)}}{{1!}}\left( {x - a} \right) + \dfrac{{f''\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + \dfrac{{f'''\left( a \right)}}{{3!}}{\left( {x - a} \right)^3} + \ldots $
Now, we will write the Maclaurin series by substituting $a = 0$
$ \Rightarrow f\left( 0 \right) + \dfrac{{f'\left( 0 \right)}}{{1!}}\left( {x - 0} \right) + \dfrac{{f''\left( 0 \right)}}{{2!}}{\left( {x - 0} \right)^2} + \dfrac{{f'''\left( 0 \right)}}{{3!}}{\left( {x - 0} \right)^3} + \ldots $
Simplifying the expression, we get:
$ \Rightarrow f\left( 0 \right) + \dfrac{{f'\left( 0 \right)}}{{1!}}\left( x \right) + \dfrac{{f''\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{f'''\left( 0 \right)}}{{3!}}{x^3} + \ldots $
Now, we find the value of $f\left( 0 \right)$ by substituting zero for $x$ in the$f\left( x \right)$
$ \Rightarrow f\left( 0 \right) = \cos 0^\circ $
$ \Rightarrow f\left( 0 \right) = 1$
Now, we will find the value of $f'\left( x \right)$by differentiating the function, $f\left( x \right)$
\[ \Rightarrow \cosh x = - \sinh x\]
Now compute the value of $f'\left( 0 \right)$ by substituting zero for $x$ in $f'\left( x \right)$
$ \Rightarrow f'\left( 0 \right) = - \sin 0$
Now, substitute zero for $\sin 0$
$ \Rightarrow f'\left( 0 \right) = 0$
Now, we will find the second derivative of the function.
\[ \Rightarrow f''\left( x \right) = {\left( { - \sinh x} \right)^{\prime \prime }}\]
\[ \Rightarrow f''\left( x \right) = - \cosh x\]
Now compute the value of $f''\left( 0 \right)$ by substituting zero for $x$ in $f''\left( x \right)$
$ \Rightarrow f''\left( 0 \right) = - \cos 0$
Now, substitute one for $\cos 0$
$ \Rightarrow f''\left( 0 \right) = - 1$
Now, we will find the third derivative of the function.
\[ \Rightarrow f'''\left( x \right) = {\left( { - \cosh x} \right)^{\prime \prime \prime }}\]
\[ \Rightarrow f'''\left( x \right) = \sinh x\]
Now compute the value of $f'''\left( 0 \right)$ by substituting zero for $x$ in $f'''\left( x \right)$
$ \Rightarrow f'''\left( 0 \right) = \sin 0$
Now, substitute zero for $\sin 0$
$ \Rightarrow f'''\left( 0 \right) = 0$
Now, we will find the value of ${f^4}\left( x \right)$.
\[ \Rightarrow {f^4}\left( x \right) = {\left( {\sinh x} \right)^\prime }^{\prime \prime \prime }\]
\[ \Rightarrow {f^4}\left( x \right) = \cosh x\]
Now compute the value of ${f^4}\left( 0 \right)$ by substituting zero for $x$ in ${f^4}\left( x \right)$
$ \Rightarrow {f^4}\left( 0 \right) = \cos 0$
$ \Rightarrow {f^4}\left( 0 \right) = 1$
Now, substitute the values in the Maclaurin series, we get:
$ \Rightarrow 1 + \dfrac{0}{{1!}}\left( x \right) - \dfrac{1}{{2!}}{x^2} + \dfrac{0}{{3!}}{x^3} + \dfrac{1}{{4!}}{x^4} \ldots $
$ \Rightarrow 1 + 0 - \dfrac{{{x^2}}}{{2!}} + 0 + \dfrac{{{x^4}}}{{4!}} + \ldots $
$ \Rightarrow 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} + \ldots $
Hence, the Maclaurin series for $f\left( x \right) = \cosh \left( x \right)$ is $1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} + \ldots $
Note: Please note that the Taylor series is given by:
$f\left( a \right) + \dfrac{{f'\left( a \right)}}{{1!}}\left( {x - a} \right) + \dfrac{{f''\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + \dfrac{{f'''\left( a \right)}}{{3!}}{\left( {x - a} \right)^3} + \ldots $
The Maclaurin series is a special occurrence of Taylor series in which the series is obtained by substituting $a = 0$. The Taylor series is an expansion of a function about a particular point and a one dimensional series which is an expansion of real function about the point is known as Maclaurin series.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

