
How do you find the Maclaurin series for tanx?
Answer
547.8k+ views
Hint: In this question, we need to find the Maclaurins series for tanx. For this, we will find some derivative of tanx i.e if f(x) = tanx. We will try to find f(0), f'(0), f''(0), f'''(0), . . . . . . . . After that we will use the formula of Maclaurins series to evaluate our answer. Maclaurins series is given by $ f\left( x \right)=f\left( 0 \right)+f'\left( 0 \right)x+\dfrac{f''\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{f'''\left( 0 \right)}{3!}{{x}^{3}}+\cdots \ \cdots $ .
Complete step by step answer:
Here we are given the function as tanx for which we need to find the Maclaurin’s series. Let us suppose that f(x) = tanx.
We know, Maclaurins series for a function f(x) is given by:
$ f\left( x \right)=f\left( 0 \right)+f'\left( 0 \right)x+\dfrac{f''\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{f'''\left( 0 \right)}{3!}{{x}^{3}}+\cdots \ \cdots $ .
So let us evaluate the values of f(0), f'(0), f''(0), f'''(0), . . . . . . . . .
For this, we need to evaluate f'(x), f''(x), f'''(x).
We have f(x) = tanx.
Putting x = 0 we get f(0) = tan0.
We know that tan0 is 0 so we get $ f\left( 0 \right)=0\cdots \cdots \cdots \left( 1 \right) $ .
Differentiating f(x) with respect to x we get $ f'\left( x \right)=\dfrac{d}{dx}\tan x $ .
We know that, derivative of tanx is $ {{\sec }^{2}}x $ so we have $ f'\left( x \right)={{\sec }^{2}}x $ .
We know that $ {{\sec }^{2}}x=1+{{\tan }^{2}}x $ so we get $ f'\left( x \right)=1+{{\tan }^{2}}x $ .
Putting x = 0 we get $ f'\left( 0 \right)=1+{{\tan }^{2}}0 $ .
Using tan0 = 0 we get $ f'\left( 0 \right)=1+0\Rightarrow f'\left( 0 \right)=1\cdots \cdots \cdots \left( 2 \right) $ .
Differentiating f'(x) with respect to x we get $ f''\left( x \right)=\dfrac{d}{dx}\left( 1+{{\tan }^{2}}x \right) $ .
We know that $ \dfrac{d\left( 1 \right)}{dx}=0 $ so let us find derivative of $ {{\tan }^{2}}x $ . Using chain rule, derivatives of $ {{\tan }^{2}}x $ will be given by $ 2{{\tan }^{2}}x\cdot \dfrac{d}{dx}\tan x=2\tan x{{\sec }^{2}}x $ .
Therefore we have $ f''\left( x \right)=0+2\tan x{{\sec }^{2}}x\Rightarrow f''\left( x \right)=2\tan x{{\sec }^{2}}x $ .
Using $ {{\sec }^{2}}x=1+{{\tan }^{2}}x $ we get $ f''\left( x \right)=2\tan x\left( 1+{{\tan }^{2}}x \right) $ .
Putting x = 0 we get $ f''\left( x0 \right)=2\tan 0\left( 1+{{\tan }^{2}}0 \right) $ .
Again using tan0 = 0 we get $ f''\left( 0 \right)=2\left( 0 \right)\left( 1+0 \right)=0\Rightarrow f''\left( 0 \right)=0\cdots \cdots \cdots \left( 3 \right) $ .
Differentiating f''(x) with respect to x we get $ f'''\left( x \right)=\dfrac{d}{dx}\left( 2\tan x\left( 1+{{\tan }^{2}}x \right) \right) $ .
For this, let us use the product rule. We know that, for any two functions u and v product rule is given as $ \dfrac{duv}{dx}=uv'+u'v $ where u' and v' are derivatives of u and v respectively, we get,
\[f'''\left( x \right)=2\left( \tan x\dfrac{d}{dx}\left( 1+{{\tan }^{2}}x \right)+\dfrac{d}{dx}\left( \tan x \right)\cdot \left( 1+{{\tan }^{2}}x \right) \right)\].
Using previous results for derivatives of \[\left( 1+{{\tan }^{2}}x \right)\] and tanx we get,
\[f'''\left( x \right)=2\left( \tan x\left( 2\tan x\left( 1+{{\tan }^{2}}x \right) \right)+\left( 1+{{\tan }^{2}}x \right)\left( 1+{{\tan }^{2}}x \right) \right)\].
Simplifying we get, \[f'''\left( x \right)=2\left( 2{{\tan }^{2}}x\left( 1+{{\tan }^{2}}x \right)+{{\left( 1+{{\tan }^{2}}x \right)}^{2}} \right)\].
Putting x = 0 we get \[f'''\left( 0 \right)=2\left( 2{{\tan }^{2}}0\left( 1+{{\tan }^{2}}0 \right)+{{\left( 1+{{\tan }^{2}}0 \right)}^{2}} \right)\].
Again using tan0 = 0 we get,
\[\begin{align}
& f'''\left( 0 \right)=2\left( 2\times 0\left( 1+0 \right)+{{\left( 1+0 \right)}^{2}} \right) \\
& \Rightarrow f'''\left( 0 \right)=2\left( 0+{{1}^{2}} \right) \\
& \Rightarrow f'''\left( 0 \right)=2\left( 1 \right) \\
& \Rightarrow f'''\left( 0 \right)=2\cdots \cdots \cdots \left( 4 \right) \\
\end{align}\]
Putting all these values in the Maclaurins series we get,
$ \tan x=0+\left( 1 \right)x+\dfrac{0}{2!}{{x}^{2}}+\dfrac{2}{3!}{{x}^{3}}+\cdots \ \cdots $ .
Simplifying we get $ \tan x=x+\dfrac{2}{3!}{{x}^{3}}+\cdots \ \cdots $ .
Expanding 3! as $ 3\times 2 $ we get $ \tan x=x+\dfrac{2}{3\times 2}{{x}^{3}}+\cdots \ \cdots \Rightarrow \tan x=x+\dfrac{{{x}^{3}}}{3}+\cdots \ \cdots $ .
Therefore, the Maclaurins series for tanx is given as $ \tan x=x+\dfrac{{{x}^{3}}}{3}+\cdots \ \cdots $ .
Note:
Students should take care while finding all the derivatives. They should note that all even values will be equal to 0, so we have Maclaurin’s series in odd order only. They can find more functions to increase expansion.
Complete step by step answer:
Here we are given the function as tanx for which we need to find the Maclaurin’s series. Let us suppose that f(x) = tanx.
We know, Maclaurins series for a function f(x) is given by:
$ f\left( x \right)=f\left( 0 \right)+f'\left( 0 \right)x+\dfrac{f''\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{f'''\left( 0 \right)}{3!}{{x}^{3}}+\cdots \ \cdots $ .
So let us evaluate the values of f(0), f'(0), f''(0), f'''(0), . . . . . . . . .
For this, we need to evaluate f'(x), f''(x), f'''(x).
We have f(x) = tanx.
Putting x = 0 we get f(0) = tan0.
We know that tan0 is 0 so we get $ f\left( 0 \right)=0\cdots \cdots \cdots \left( 1 \right) $ .
Differentiating f(x) with respect to x we get $ f'\left( x \right)=\dfrac{d}{dx}\tan x $ .
We know that, derivative of tanx is $ {{\sec }^{2}}x $ so we have $ f'\left( x \right)={{\sec }^{2}}x $ .
We know that $ {{\sec }^{2}}x=1+{{\tan }^{2}}x $ so we get $ f'\left( x \right)=1+{{\tan }^{2}}x $ .
Putting x = 0 we get $ f'\left( 0 \right)=1+{{\tan }^{2}}0 $ .
Using tan0 = 0 we get $ f'\left( 0 \right)=1+0\Rightarrow f'\left( 0 \right)=1\cdots \cdots \cdots \left( 2 \right) $ .
Differentiating f'(x) with respect to x we get $ f''\left( x \right)=\dfrac{d}{dx}\left( 1+{{\tan }^{2}}x \right) $ .
We know that $ \dfrac{d\left( 1 \right)}{dx}=0 $ so let us find derivative of $ {{\tan }^{2}}x $ . Using chain rule, derivatives of $ {{\tan }^{2}}x $ will be given by $ 2{{\tan }^{2}}x\cdot \dfrac{d}{dx}\tan x=2\tan x{{\sec }^{2}}x $ .
Therefore we have $ f''\left( x \right)=0+2\tan x{{\sec }^{2}}x\Rightarrow f''\left( x \right)=2\tan x{{\sec }^{2}}x $ .
Using $ {{\sec }^{2}}x=1+{{\tan }^{2}}x $ we get $ f''\left( x \right)=2\tan x\left( 1+{{\tan }^{2}}x \right) $ .
Putting x = 0 we get $ f''\left( x0 \right)=2\tan 0\left( 1+{{\tan }^{2}}0 \right) $ .
Again using tan0 = 0 we get $ f''\left( 0 \right)=2\left( 0 \right)\left( 1+0 \right)=0\Rightarrow f''\left( 0 \right)=0\cdots \cdots \cdots \left( 3 \right) $ .
Differentiating f''(x) with respect to x we get $ f'''\left( x \right)=\dfrac{d}{dx}\left( 2\tan x\left( 1+{{\tan }^{2}}x \right) \right) $ .
For this, let us use the product rule. We know that, for any two functions u and v product rule is given as $ \dfrac{duv}{dx}=uv'+u'v $ where u' and v' are derivatives of u and v respectively, we get,
\[f'''\left( x \right)=2\left( \tan x\dfrac{d}{dx}\left( 1+{{\tan }^{2}}x \right)+\dfrac{d}{dx}\left( \tan x \right)\cdot \left( 1+{{\tan }^{2}}x \right) \right)\].
Using previous results for derivatives of \[\left( 1+{{\tan }^{2}}x \right)\] and tanx we get,
\[f'''\left( x \right)=2\left( \tan x\left( 2\tan x\left( 1+{{\tan }^{2}}x \right) \right)+\left( 1+{{\tan }^{2}}x \right)\left( 1+{{\tan }^{2}}x \right) \right)\].
Simplifying we get, \[f'''\left( x \right)=2\left( 2{{\tan }^{2}}x\left( 1+{{\tan }^{2}}x \right)+{{\left( 1+{{\tan }^{2}}x \right)}^{2}} \right)\].
Putting x = 0 we get \[f'''\left( 0 \right)=2\left( 2{{\tan }^{2}}0\left( 1+{{\tan }^{2}}0 \right)+{{\left( 1+{{\tan }^{2}}0 \right)}^{2}} \right)\].
Again using tan0 = 0 we get,
\[\begin{align}
& f'''\left( 0 \right)=2\left( 2\times 0\left( 1+0 \right)+{{\left( 1+0 \right)}^{2}} \right) \\
& \Rightarrow f'''\left( 0 \right)=2\left( 0+{{1}^{2}} \right) \\
& \Rightarrow f'''\left( 0 \right)=2\left( 1 \right) \\
& \Rightarrow f'''\left( 0 \right)=2\cdots \cdots \cdots \left( 4 \right) \\
\end{align}\]
Putting all these values in the Maclaurins series we get,
$ \tan x=0+\left( 1 \right)x+\dfrac{0}{2!}{{x}^{2}}+\dfrac{2}{3!}{{x}^{3}}+\cdots \ \cdots $ .
Simplifying we get $ \tan x=x+\dfrac{2}{3!}{{x}^{3}}+\cdots \ \cdots $ .
Expanding 3! as $ 3\times 2 $ we get $ \tan x=x+\dfrac{2}{3\times 2}{{x}^{3}}+\cdots \ \cdots \Rightarrow \tan x=x+\dfrac{{{x}^{3}}}{3}+\cdots \ \cdots $ .
Therefore, the Maclaurins series for tanx is given as $ \tan x=x+\dfrac{{{x}^{3}}}{3}+\cdots \ \cdots $ .
Note:
Students should take care while finding all the derivatives. They should note that all even values will be equal to 0, so we have Maclaurin’s series in odd order only. They can find more functions to increase expansion.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

