
How do you find the Maclaurin Series for $\sin \left( {{x^2}} \right)?$
Answer
541.2k+ views
Hint:First find the Maclaurin Series for $\sin x$ then put ${x^2}$ in place of the argument that is $x$. Maclaurin Series of a function $f(x)$ is given as following:
$f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}(x) + \dfrac{{f''(0)}}{{2!}}({x^2}) + \dfrac{{f'''(0)}}{{3!}}({x^3}) + ...$
Where $f'(0),\;f''(0)\;{\text{and}}\;f'''(0)$ are derivatives of first, second and third order at $x = 0$ of the given function $f(x)$
Complete step by step solution:
In order to find the Maclaurin Series for $\sin ({x^2})$ we need to first
to find the Maclaurin Series of $\sin x$ and then we will replace $x\;{\text{with}}\;{x^2}$ then we will get the required Maclaurin series for $\sin ({x^2})$
Maclaurin series of a function $f(x)$ is given by
$f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}(x) + \dfrac{{f''(0)}}{{2!}}({x^2}) + \dfrac{{f'''(0)}}{{3!}}({x^3}) + ...$
So first finding the Maclaurin Series for $f(x) = \sin x$
Here $f(x) = \sin x$ so finding respective values at $x = 0$
$
f(0) = \sin (0) = 0 \\
f'(0) = \cos (0) = 1 \\
f''(0) = - \sin (0) = 0 \\
f'''(0) = - \cos (0) = - 1 \\
$
Putting these values above in order to find the Maclaurin Series expansion of $f(x) = \sin x$
$
f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}(x) + \dfrac{{f''(0)}}{{2!}}({x^2}) + \dfrac{{f'''(0)}}{{3!}}({x^3}) + ... \\
\sin x = 0 + \dfrac{1}{{1!}}(x) + \dfrac{0}{{2!}}({x^2}) + \dfrac{{( - 1)}}{{3!}}({x^3}) + ... \\
\sin x = \dfrac{x}{{1!}} - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ... \\
$
This is the Maclaurin Series of a sine function
Hence for Maclaurin Series expansion for $f(x) = \sin ({x^2})$ we will replace $x\;{\text{with}}\;{x^2}$ we will get
$
\sin x = \dfrac{x}{{1!}} - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ... \\
\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{{\left( {{x^2}} \right)}^3}}}{{3!}} + \dfrac{{{{\left(
{{x^2}} \right)}^5}}}{{5!}} - ... \\
$
Now we will use the law of indices for brackets to simplify it,
$
\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^{2 \times 3}}}}{{3!}} + \dfrac{{{x^{2 \times
5}}}}{{5!}} - ... \\
\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^6}}}{{3!}} + \dfrac{{{x^{10}}}}{{5!}} - ... \\
$
So $\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^6}}}{{3!}} + \dfrac{{{x^{10}}}}{{5!}} - ...$ is
the required Maclaurin Series for the given trigonometric function $\sin ({x^2})$
Now we should more simplify and generalize this expansion in order to understand the expansion more easily
It can be generalized with the use of sigma summation notation as follows:
$
\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^6}}}{{3!}} + \dfrac{{{x^{10}}}}{{5!}} - ... \\
\sin \left( {{x^2}} \right) = \sum\limits_{n = 0}^\infty {\dfrac{{{x^{4n + 2}}}}{{(2n + 1)!}} \times {{( -
1)}^n}} \\
$
Note: Maclaurin Series is a special case of Taylor Series, we obtain it by substituting ${x_0} = 0$ in the Taylor series. Maclaurin Series is very useful in finding the approximate values for any argument of a given function, this is to be noted that it gives approximate values instead of the absolute value, if you want absolute value then go for regular methods.
$f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}(x) + \dfrac{{f''(0)}}{{2!}}({x^2}) + \dfrac{{f'''(0)}}{{3!}}({x^3}) + ...$
Where $f'(0),\;f''(0)\;{\text{and}}\;f'''(0)$ are derivatives of first, second and third order at $x = 0$ of the given function $f(x)$
Complete step by step solution:
In order to find the Maclaurin Series for $\sin ({x^2})$ we need to first
to find the Maclaurin Series of $\sin x$ and then we will replace $x\;{\text{with}}\;{x^2}$ then we will get the required Maclaurin series for $\sin ({x^2})$
Maclaurin series of a function $f(x)$ is given by
$f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}(x) + \dfrac{{f''(0)}}{{2!}}({x^2}) + \dfrac{{f'''(0)}}{{3!}}({x^3}) + ...$
So first finding the Maclaurin Series for $f(x) = \sin x$
Here $f(x) = \sin x$ so finding respective values at $x = 0$
$
f(0) = \sin (0) = 0 \\
f'(0) = \cos (0) = 1 \\
f''(0) = - \sin (0) = 0 \\
f'''(0) = - \cos (0) = - 1 \\
$
Putting these values above in order to find the Maclaurin Series expansion of $f(x) = \sin x$
$
f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}(x) + \dfrac{{f''(0)}}{{2!}}({x^2}) + \dfrac{{f'''(0)}}{{3!}}({x^3}) + ... \\
\sin x = 0 + \dfrac{1}{{1!}}(x) + \dfrac{0}{{2!}}({x^2}) + \dfrac{{( - 1)}}{{3!}}({x^3}) + ... \\
\sin x = \dfrac{x}{{1!}} - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ... \\
$
This is the Maclaurin Series of a sine function
Hence for Maclaurin Series expansion for $f(x) = \sin ({x^2})$ we will replace $x\;{\text{with}}\;{x^2}$ we will get
$
\sin x = \dfrac{x}{{1!}} - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - ... \\
\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{{\left( {{x^2}} \right)}^3}}}{{3!}} + \dfrac{{{{\left(
{{x^2}} \right)}^5}}}{{5!}} - ... \\
$
Now we will use the law of indices for brackets to simplify it,
$
\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^{2 \times 3}}}}{{3!}} + \dfrac{{{x^{2 \times
5}}}}{{5!}} - ... \\
\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^6}}}{{3!}} + \dfrac{{{x^{10}}}}{{5!}} - ... \\
$
So $\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^6}}}{{3!}} + \dfrac{{{x^{10}}}}{{5!}} - ...$ is
the required Maclaurin Series for the given trigonometric function $\sin ({x^2})$
Now we should more simplify and generalize this expansion in order to understand the expansion more easily
It can be generalized with the use of sigma summation notation as follows:
$
\sin \left( {{x^2}} \right) = \dfrac{{{x^2}}}{{1!}} - \dfrac{{{x^6}}}{{3!}} + \dfrac{{{x^{10}}}}{{5!}} - ... \\
\sin \left( {{x^2}} \right) = \sum\limits_{n = 0}^\infty {\dfrac{{{x^{4n + 2}}}}{{(2n + 1)!}} \times {{( -
1)}^n}} \\
$
Note: Maclaurin Series is a special case of Taylor Series, we obtain it by substituting ${x_0} = 0$ in the Taylor series. Maclaurin Series is very useful in finding the approximate values for any argument of a given function, this is to be noted that it gives approximate values instead of the absolute value, if you want absolute value then go for regular methods.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

