
How do you find the Maclaurin series for \[f\left( x \right)\] using the definition of a Maclaurin series of \[4\sinh \left( 4x \right)\]?
Answer
508.5k+ views
Hint: In this problem, we have to find the Maclaurin series for \[f\left( x \right)\] using the definition of a Maclaurin series, of \[4\sinh \left( 4x \right)\]. We can now derive the Maclaurin series from an infinite series. We can write the infinite series, we can then find the first derivative, second derivative, third derivative, fourth and fifth derivative of the given function. We can substitute the derivatives in the infinite function to get the final answer.
Complete step by step answer:
We can now derive the Maclaurin series from an infinite series. We can write the infinite series.
\[\Rightarrow f\left( x \right)=f\left( 0 \right)+f'\left( 0 \right)x+\dfrac{f''\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{f'''\left( 0 \right)}{3!}{{x}^{3}}+....+\dfrac{{{f}^{n}}\left( 0 \right)}{n!}{{x}^{n}}\] ……. (1)
We know that the given function is,
\[f\left( x \right)=4\sinh \left( 4x \right)\]
We can now find the first term of the infinite series (1) from the above function,
\[\Rightarrow f\left( 0 \right)=4\sinh \left( 0 \right)=0\]…… (2)
We can now find the first derivative of \[f\left( x \right)=4\sinh \left( 4x \right)\] , we get
\[\begin{align}
& \Rightarrow f'\left( x \right)=4\cosh \left( 4x \right)4 \\
& \Rightarrow f'\left( x \right)=16\cosh \left( 4x \right) \\
& \Rightarrow f'\left( 0 \right)=16\cosh \left( 0 \right)=16={{4}^{2}} \\
\end{align}\]
We can now find the second derivative \[f\left( x \right)=4\sinh \left( 4x \right)\], we get
\[\begin{align}
& \Rightarrow f''\left( x \right)=16\sinh \left( 4x \right)4 \\
& \Rightarrow f''\left( x \right)=64\sinh \left( 4x \right) \\
& \Rightarrow f''\left( 0 \right)=64\sinh \left( 0 \right)=0 \\
\end{align}\]
We can now find the third derivative \[f\left( x \right)=4\sinh \left( 4x \right)\], we get
\[\begin{align}
& \Rightarrow f'''\left( x \right)=64\cosh \left( 4x \right)4 \\
& \Rightarrow f'''\left( x \right)=256\cosh \left( 4x \right) \\
& \Rightarrow f'''\left( 0 \right)=256\cosh \left( 0 \right)=256={{4}^{4}} \\
\end{align}\]
We can now find the fourth derivative \[f\left( x \right)=4\sinh \left( 4x \right)\], we get
\[\begin{align}
& \Rightarrow f''''\left( x \right)=256\sinh \left( 4x \right)4 \\
& \Rightarrow f''''\left( x \right)=1024\sinh \left( 4x \right) \\
& \Rightarrow f''''\left( 0 \right)=1024\sinh \left( 0 \right)=0 \\
\end{align}\]
We can now find the fifth derivative \[f\left( x \right)=4\sinh \left( 4x \right)\], we get
\[\begin{align}
& \Rightarrow f'\left( x \right)=1024\cosh \left( 4x \right)4 \\
& \Rightarrow f'\left( x \right)=4096\cosh \left( 4x \right) \\
& \Rightarrow f'\left( 0 \right)=4096\cosh \left( 0 \right)={{4}^{6}} \\
\end{align}\]
We can now observe that, we can see a clear pattern formatting, where
\[{{f}^{\left( n \right)}}\left( 0 \right)=\left\{ \begin{matrix}
0 & n\text{ even} \\
4\times {{4}^{n}} & n\text{ odd} \\
\end{matrix} \right.\]
We can now form the Maclaurin series from (1), we get
\[\begin{align}
& \Rightarrow f\left( x \right)=0+16x+0{{x}^{2}}+\dfrac{256}{6}{{x}^{3}}+0{{x}^{4}}+\dfrac{4096}{120}{{x}^{5}}.... \\
& \Rightarrow f\left( x \right)=16x+\dfrac{128}{3}{{x}^{3}}+\dfrac{512}{15}{{x}^{5}}....+\dfrac{4\times {{4}^{2n+1}}}{2n+1}{{x}^{2n+1}} \\
& \Rightarrow f\left( x \right)=16x+\dfrac{128}{3}{{x}^{3}}+\dfrac{512}{15}{{x}^{5}}....+\dfrac{{{4}^{2n+2}}}{2n+1}{{x}^{2n+1}} \\
\end{align}\]
Therefore, the Maclaurin series is \[f\left( x \right)=16x+\dfrac{128}{3}{{x}^{3}}+\dfrac{512}{15}{{x}^{5}}....+\dfrac{{{4}^{2n+2}}}{2n+1}{{x}^{2n+1}}\].
Note: Students make mistakes while finding the derivatives for the given function for which we should know some differentiation formulas. We should also concentrate while substituting each derivative of \[f\left( 0 \right)\] and we should calculate it to get the Maclaurin series.
Complete step by step answer:
We can now derive the Maclaurin series from an infinite series. We can write the infinite series.
\[\Rightarrow f\left( x \right)=f\left( 0 \right)+f'\left( 0 \right)x+\dfrac{f''\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{f'''\left( 0 \right)}{3!}{{x}^{3}}+....+\dfrac{{{f}^{n}}\left( 0 \right)}{n!}{{x}^{n}}\] ……. (1)
We know that the given function is,
\[f\left( x \right)=4\sinh \left( 4x \right)\]
We can now find the first term of the infinite series (1) from the above function,
\[\Rightarrow f\left( 0 \right)=4\sinh \left( 0 \right)=0\]…… (2)
We can now find the first derivative of \[f\left( x \right)=4\sinh \left( 4x \right)\] , we get
\[\begin{align}
& \Rightarrow f'\left( x \right)=4\cosh \left( 4x \right)4 \\
& \Rightarrow f'\left( x \right)=16\cosh \left( 4x \right) \\
& \Rightarrow f'\left( 0 \right)=16\cosh \left( 0 \right)=16={{4}^{2}} \\
\end{align}\]
We can now find the second derivative \[f\left( x \right)=4\sinh \left( 4x \right)\], we get
\[\begin{align}
& \Rightarrow f''\left( x \right)=16\sinh \left( 4x \right)4 \\
& \Rightarrow f''\left( x \right)=64\sinh \left( 4x \right) \\
& \Rightarrow f''\left( 0 \right)=64\sinh \left( 0 \right)=0 \\
\end{align}\]
We can now find the third derivative \[f\left( x \right)=4\sinh \left( 4x \right)\], we get
\[\begin{align}
& \Rightarrow f'''\left( x \right)=64\cosh \left( 4x \right)4 \\
& \Rightarrow f'''\left( x \right)=256\cosh \left( 4x \right) \\
& \Rightarrow f'''\left( 0 \right)=256\cosh \left( 0 \right)=256={{4}^{4}} \\
\end{align}\]
We can now find the fourth derivative \[f\left( x \right)=4\sinh \left( 4x \right)\], we get
\[\begin{align}
& \Rightarrow f''''\left( x \right)=256\sinh \left( 4x \right)4 \\
& \Rightarrow f''''\left( x \right)=1024\sinh \left( 4x \right) \\
& \Rightarrow f''''\left( 0 \right)=1024\sinh \left( 0 \right)=0 \\
\end{align}\]
We can now find the fifth derivative \[f\left( x \right)=4\sinh \left( 4x \right)\], we get
\[\begin{align}
& \Rightarrow f'\left( x \right)=1024\cosh \left( 4x \right)4 \\
& \Rightarrow f'\left( x \right)=4096\cosh \left( 4x \right) \\
& \Rightarrow f'\left( 0 \right)=4096\cosh \left( 0 \right)={{4}^{6}} \\
\end{align}\]
We can now observe that, we can see a clear pattern formatting, where
\[{{f}^{\left( n \right)}}\left( 0 \right)=\left\{ \begin{matrix}
0 & n\text{ even} \\
4\times {{4}^{n}} & n\text{ odd} \\
\end{matrix} \right.\]
We can now form the Maclaurin series from (1), we get
\[\begin{align}
& \Rightarrow f\left( x \right)=0+16x+0{{x}^{2}}+\dfrac{256}{6}{{x}^{3}}+0{{x}^{4}}+\dfrac{4096}{120}{{x}^{5}}.... \\
& \Rightarrow f\left( x \right)=16x+\dfrac{128}{3}{{x}^{3}}+\dfrac{512}{15}{{x}^{5}}....+\dfrac{4\times {{4}^{2n+1}}}{2n+1}{{x}^{2n+1}} \\
& \Rightarrow f\left( x \right)=16x+\dfrac{128}{3}{{x}^{3}}+\dfrac{512}{15}{{x}^{5}}....+\dfrac{{{4}^{2n+2}}}{2n+1}{{x}^{2n+1}} \\
\end{align}\]
Therefore, the Maclaurin series is \[f\left( x \right)=16x+\dfrac{128}{3}{{x}^{3}}+\dfrac{512}{15}{{x}^{5}}....+\dfrac{{{4}^{2n+2}}}{2n+1}{{x}^{2n+1}}\].
Note: Students make mistakes while finding the derivatives for the given function for which we should know some differentiation formulas. We should also concentrate while substituting each derivative of \[f\left( 0 \right)\] and we should calculate it to get the Maclaurin series.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

