
How do I find the Maclaurin series for $\dfrac{\arcsin \left( x \right)}{x}$?
Answer
543.3k+ views
Hint: In this question we have to find the Maclaurin series of the given function $\dfrac{\arcsin \left( x \right)}{x}$. The Maclaurin series is given by the expression $f\left( x \right)=f\left( 0 \right)+\dfrac{{{f}^{1}}\left( 0 \right)}{1!}x+\dfrac{{{f}^{2}}\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{{{f}^{3}}\left( 0 \right)}{3!}{{x}^{3}}...$.
We will first find the Maclaurin series for the term $\arcsin \left( x \right)$ and then divide it with $x$ to get the Maclaurin series for $\dfrac{\arcsin \left( x \right)}{x}$.
Complete step by step answer:
We have the given expression as:
$\Rightarrow \dfrac{\arcsin \left( x \right)}{x}$
We will start by finding the Maclaurin series for $\arcsin \left( x \right)$ and then divide by $x$.
The general form of the Maclaurin series is:
$f\left( x \right)=f\left( 0 \right)+\dfrac{{{f}^{1}}\left( 0 \right)}{1!}x+\dfrac{{{f}^{2}}\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{{{f}^{3}}\left( 0 \right)}{3!}{{x}^{3}}+...$
Therefore, we will consider $f\left( x \right)=\arcsin x$.
The first derivative of the term can be found out as:
$\Rightarrow f'\left( x \right)=\dfrac{d}{dx}\left( \arcsin \left( x \right) \right)$
On using the formula and taking the derivative, we get:
$\Rightarrow f'\left( x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}......(1)$
Along with the higher derivatives. But since the calculations will get tedious, we will use another method for calculating the powers which is by using the Binomial expansion. The binomial expansion is:
$\Rightarrow {{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n\left( n-1 \right)}{2!}{{x}^{2}}+\dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!}{{x}^{3}}+....$
Therefore, now equation $\left( 1 \right)$ becomes:
$\Rightarrow f'\left( x \right)=\dfrac{d}{dx}\left( \arcsin \left( x \right) \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$
On rearing the root term into exponential form, we get:
$\Rightarrow {{\left( 1-{{x}^{2}} \right)}^{-\dfrac{1}{2}}}$
Now the above expression is in the form of the left-hand side of the binomial expansion. Therefore, on expanding, we get:
$\Rightarrow 1+\left( -\dfrac{1}{2} \right)\left( -{{x}^{2}} \right)+\dfrac{\left( -\dfrac{1}{2} \right)\left( -\dfrac{3}{2} \right)}{2!}{{\left( -{{x}^{2}} \right)}^{2}}+\dfrac{\left( -\dfrac{1}{2} \right)\left( -\dfrac{3}{2} \right)\left( -\dfrac{5}{2} \right)}{3!}{{\left( -{{x}^{2}} \right)}^{3}}+...$
On simplifying the terms, we get:
$\Rightarrow 1+\dfrac{1}{2}{{x}^{2}}+\dfrac{\dfrac{3}{4}}{2}{{x}^{4}}+\dfrac{\dfrac{15}{8}}{6}{{x}^{6}}+...$
On rearranging the fractions and simplifying them, we get:
$\Rightarrow 1+\dfrac{1}{2}{{x}^{2}}+\dfrac{3}{8}{{x}^{4}}+\dfrac{5}{16}{{x}^{6}}+..$
Now, to get the power series, we will integrate the terms from the limit of $0$ to $x$ with respect to $t$.
$\Rightarrow \arcsin x=\int\limits_{0}^{x}{\left\{ 1+\dfrac{1}{2}{{t}^{2}}+\dfrac{3}{8}{{t}^{4}}+\dfrac{5}{16}{{t}^{6}}+... \right\}}dt$
Now we know that $\int{1}dt=t$ and \[{{\int{t}}^{n}}dt=\dfrac{{{t}^{n+1}}}{n+1}\] therefore, on using the formula, we get:
$\Rightarrow \arcsin x=\left[ t+\dfrac{1}{6}{{t}^{3}}+\dfrac{3}{40}{{t}^{5}}+\dfrac{5}{112}{{t}^{7}}+... \right]_{0}^{x}$
On putting the limits, we get:
$\Rightarrow \arcsin x=x+\dfrac{1}{6}{{x}^{3}}+\dfrac{3}{40}{{x}^{5}}+\dfrac{5}{112}{{x}^{7}}+...$
Which is the required Maclaurin series for $\arcsin \left( x \right)$.
Now the Maclaurin series for $\dfrac{\arcsin \left( x \right)}{x}$ can be found as:
$\Rightarrow \dfrac{\arcsin x}{x}=\dfrac{1}{x}\left( x+\dfrac{1}{6}{{x}^{3}}+\dfrac{3}{40}{{x}^{5}}+\dfrac{5}{112}{{x}^{7}}+... \right)$
On simplifying, we get:
$\Rightarrow \dfrac{\arcsin x}{x}=1+\dfrac{1}{6}{{x}^{2}}+\dfrac{3}{40}{{x}^{4}}+\dfrac{5}{112}{{x}^{6}}+...$, which is the required solution.
Note: It is to be remembered that Maclaurin series is a power series which gives us the approximation of a function for its values really close to zero. It is to be remembered that the Taylor series and the Maclaurin series are similar series. Maclaurin is a type of Taylor series which uses zero as a single point in its derivative.
We will first find the Maclaurin series for the term $\arcsin \left( x \right)$ and then divide it with $x$ to get the Maclaurin series for $\dfrac{\arcsin \left( x \right)}{x}$.
Complete step by step answer:
We have the given expression as:
$\Rightarrow \dfrac{\arcsin \left( x \right)}{x}$
We will start by finding the Maclaurin series for $\arcsin \left( x \right)$ and then divide by $x$.
The general form of the Maclaurin series is:
$f\left( x \right)=f\left( 0 \right)+\dfrac{{{f}^{1}}\left( 0 \right)}{1!}x+\dfrac{{{f}^{2}}\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{{{f}^{3}}\left( 0 \right)}{3!}{{x}^{3}}+...$
Therefore, we will consider $f\left( x \right)=\arcsin x$.
The first derivative of the term can be found out as:
$\Rightarrow f'\left( x \right)=\dfrac{d}{dx}\left( \arcsin \left( x \right) \right)$
On using the formula and taking the derivative, we get:
$\Rightarrow f'\left( x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}......(1)$
Along with the higher derivatives. But since the calculations will get tedious, we will use another method for calculating the powers which is by using the Binomial expansion. The binomial expansion is:
$\Rightarrow {{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n\left( n-1 \right)}{2!}{{x}^{2}}+\dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!}{{x}^{3}}+....$
Therefore, now equation $\left( 1 \right)$ becomes:
$\Rightarrow f'\left( x \right)=\dfrac{d}{dx}\left( \arcsin \left( x \right) \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$
On rearing the root term into exponential form, we get:
$\Rightarrow {{\left( 1-{{x}^{2}} \right)}^{-\dfrac{1}{2}}}$
Now the above expression is in the form of the left-hand side of the binomial expansion. Therefore, on expanding, we get:
$\Rightarrow 1+\left( -\dfrac{1}{2} \right)\left( -{{x}^{2}} \right)+\dfrac{\left( -\dfrac{1}{2} \right)\left( -\dfrac{3}{2} \right)}{2!}{{\left( -{{x}^{2}} \right)}^{2}}+\dfrac{\left( -\dfrac{1}{2} \right)\left( -\dfrac{3}{2} \right)\left( -\dfrac{5}{2} \right)}{3!}{{\left( -{{x}^{2}} \right)}^{3}}+...$
On simplifying the terms, we get:
$\Rightarrow 1+\dfrac{1}{2}{{x}^{2}}+\dfrac{\dfrac{3}{4}}{2}{{x}^{4}}+\dfrac{\dfrac{15}{8}}{6}{{x}^{6}}+...$
On rearranging the fractions and simplifying them, we get:
$\Rightarrow 1+\dfrac{1}{2}{{x}^{2}}+\dfrac{3}{8}{{x}^{4}}+\dfrac{5}{16}{{x}^{6}}+..$
Now, to get the power series, we will integrate the terms from the limit of $0$ to $x$ with respect to $t$.
$\Rightarrow \arcsin x=\int\limits_{0}^{x}{\left\{ 1+\dfrac{1}{2}{{t}^{2}}+\dfrac{3}{8}{{t}^{4}}+\dfrac{5}{16}{{t}^{6}}+... \right\}}dt$
Now we know that $\int{1}dt=t$ and \[{{\int{t}}^{n}}dt=\dfrac{{{t}^{n+1}}}{n+1}\] therefore, on using the formula, we get:
$\Rightarrow \arcsin x=\left[ t+\dfrac{1}{6}{{t}^{3}}+\dfrac{3}{40}{{t}^{5}}+\dfrac{5}{112}{{t}^{7}}+... \right]_{0}^{x}$
On putting the limits, we get:
$\Rightarrow \arcsin x=x+\dfrac{1}{6}{{x}^{3}}+\dfrac{3}{40}{{x}^{5}}+\dfrac{5}{112}{{x}^{7}}+...$
Which is the required Maclaurin series for $\arcsin \left( x \right)$.
Now the Maclaurin series for $\dfrac{\arcsin \left( x \right)}{x}$ can be found as:
$\Rightarrow \dfrac{\arcsin x}{x}=\dfrac{1}{x}\left( x+\dfrac{1}{6}{{x}^{3}}+\dfrac{3}{40}{{x}^{5}}+\dfrac{5}{112}{{x}^{7}}+... \right)$
On simplifying, we get:
$\Rightarrow \dfrac{\arcsin x}{x}=1+\dfrac{1}{6}{{x}^{2}}+\dfrac{3}{40}{{x}^{4}}+\dfrac{5}{112}{{x}^{6}}+...$, which is the required solution.
Note: It is to be remembered that Maclaurin series is a power series which gives us the approximation of a function for its values really close to zero. It is to be remembered that the Taylor series and the Maclaurin series are similar series. Maclaurin is a type of Taylor series which uses zero as a single point in its derivative.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

