
How do you find the maclaurin series expansion of $f\left( x \right)=\dfrac{1}{{{\left( 1+x \right)}^{2}}}$?
Answer
530.7k+ views
Hint: Maclaurin series is just a special case of Taylor series centered at $x=0$. It is given as $f\left( 0 \right)+\dfrac{{f}'\left( 0 \right)}{1!}x+\dfrac{{f}''\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{{f}'''\left( 0 \right)}{3!}{{x}^{3}}+........\infty $ where, ${f}'\left( 0 \right),{f}''\left( 0 \right),{f}'''\left( 0 \right)$ are the first, second and third derivatives of the function$f\left( x \right)$ at $x=0$. Here, $1!,2!,3!$ are the factorials of 1,2 and 3 respectively. Therefore, we shall calculate a few terms and then observe the pattern occurring to find our final solution.
Complete step-by-step solution:
This series follows a pattern consisting of the derivative of the function, x raised to a certain power and the factorial of the number.
Let us differentiate the function $f\left( x \right)$ now. We shall use the property of differentiation given as $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ several times to differentiate the function.
$\begin{align}
& \Rightarrow {f}'\left( x \right)=\dfrac{d}{dx}\left( \dfrac{1}{{{\left( 1+x \right)}^{2}}} \right) \\
& \Rightarrow {f}'\left( x \right)=\dfrac{-2}{{{\left( 1+x \right)}^{3}}}\dfrac{d}{dx}\left( 1+x \right) \\
\end{align}$
$\Rightarrow {f}'\left( x \right)=\dfrac{-2}{{{\left( 1+x \right)}^{3}}}$ …………….. (1)
Again differentiating the function with respect to x, we get:
$\Rightarrow {f}''\left( x \right)=\dfrac{d}{dx}{f}'\left( x \right)$
$\begin{align}
& \Rightarrow {f}''\left( x \right)=\dfrac{d}{dx}\left( \dfrac{-2}{{{\left( 1+x \right)}^{3}}} \right) \\
& \Rightarrow {f}''\left( x \right)=-2.\left( \dfrac{-3}{{{\left( 1+x \right)}^{4}}} \right)\dfrac{d}{dx}\left( 1+x \right) \\
\end{align}$
$\Rightarrow {f}''\left( x \right)=-2.\left( \dfrac{-3}{{{\left( 1+x \right)}^{4}}} \right)1$
$\Rightarrow {f}''\left( x \right)=\dfrac{6}{{{\left( 1+x \right)}^{4}}}$ …………………… (2)
Third time differentiating the function with respect to x, we get
$\begin{align}
& \Rightarrow \dfrac{d}{dx}{f}''\left( x \right)=\dfrac{d}{dx}\dfrac{6}{{{\left( 1+x \right)}^{4}}} \\
& \Rightarrow {f}'''\left( x \right)=6\dfrac{d}{dx}\dfrac{1}{{{\left( 1+x \right)}^{4}}} \\
\end{align}$
$\Rightarrow {f}'''\left( x \right)=6\left( \dfrac{-4}{{{\left( 1+x \right)}^{5}}} \right)\dfrac{d}{dx}\left( 1+x \right)$
$\Rightarrow {f}'''\left( x \right)=\left( \dfrac{-24}{{{\left( 1+x \right)}^{5}}} \right)1$
$\Rightarrow {f}'''\left( x \right)=\dfrac{-24}{{{\left( 1+x \right)}^{5}}}$ ………………. (3)
From (1), (2) and (3), we substitute the value of x equals to zero to calculate the value of the first, second and third derivative of function at point $x=0$.
$\Rightarrow {f}'\left( 0 \right)=\dfrac{-2}{{{\left( 1+0 \right)}^{3}}}$
$\Rightarrow {f}'\left( 0 \right)=\dfrac{-2}{1}=-2$
Now, ${f}''\left( 0 \right)=\dfrac{6}{{{\left( 1+0 \right)}^{4}}}$
$\Rightarrow {f}''\left( x \right)=6$
And, ${f}'''\left( 0 \right)=\dfrac{-24}{{{\left( 1+0 \right)}^{5}}}$
$\Rightarrow {f}'''\left( x \right)=-24$
Also, $f\left( 0 \right)=\dfrac{1}{{{\left( 1+0 \right)}^{2}}}$
$\Rightarrow f\left( 0 \right)=1$
Hence, the value of the first, second and third derivative of function at point $x=0$ is -2, 6 and -18 respectively. We analyze these results and find that they follow a particular pattern.
The McLaurin series is given as $f\left( 0 \right)+\dfrac{{f}'\left( 0 \right)}{1!}x+\dfrac{{f}''\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{{f}'''\left( 0 \right)}{3!}{{x}^{3}}+........\infty $.
Substituting the values in this equation, we get
$1+\dfrac{-2}{1}x+\dfrac{6}{2\times 1}{{x}^{2}}+\dfrac{-24}{3\times 2\times 1}{{x}^{3}}+........\infty $
Therefore, the MacLaurin series is given as $1-\dfrac{2}{1!}x+\dfrac{6}{2!}{{x}^{2}}-\dfrac{24}{3!}{{x}^{3}}+........\infty $
Note: We must have prior knowledge of basic differentiation in order to apply the basic properties like chain rule of differentiation while dealing with mathematical problems. The calculations in this problem must be done carefully and all the negative signs must be taken care while performing rigorous multiplication.
Complete step-by-step solution:
This series follows a pattern consisting of the derivative of the function, x raised to a certain power and the factorial of the number.
Let us differentiate the function $f\left( x \right)$ now. We shall use the property of differentiation given as $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ several times to differentiate the function.
$\begin{align}
& \Rightarrow {f}'\left( x \right)=\dfrac{d}{dx}\left( \dfrac{1}{{{\left( 1+x \right)}^{2}}} \right) \\
& \Rightarrow {f}'\left( x \right)=\dfrac{-2}{{{\left( 1+x \right)}^{3}}}\dfrac{d}{dx}\left( 1+x \right) \\
\end{align}$
$\Rightarrow {f}'\left( x \right)=\dfrac{-2}{{{\left( 1+x \right)}^{3}}}$ …………….. (1)
Again differentiating the function with respect to x, we get:
$\Rightarrow {f}''\left( x \right)=\dfrac{d}{dx}{f}'\left( x \right)$
$\begin{align}
& \Rightarrow {f}''\left( x \right)=\dfrac{d}{dx}\left( \dfrac{-2}{{{\left( 1+x \right)}^{3}}} \right) \\
& \Rightarrow {f}''\left( x \right)=-2.\left( \dfrac{-3}{{{\left( 1+x \right)}^{4}}} \right)\dfrac{d}{dx}\left( 1+x \right) \\
\end{align}$
$\Rightarrow {f}''\left( x \right)=-2.\left( \dfrac{-3}{{{\left( 1+x \right)}^{4}}} \right)1$
$\Rightarrow {f}''\left( x \right)=\dfrac{6}{{{\left( 1+x \right)}^{4}}}$ …………………… (2)
Third time differentiating the function with respect to x, we get
$\begin{align}
& \Rightarrow \dfrac{d}{dx}{f}''\left( x \right)=\dfrac{d}{dx}\dfrac{6}{{{\left( 1+x \right)}^{4}}} \\
& \Rightarrow {f}'''\left( x \right)=6\dfrac{d}{dx}\dfrac{1}{{{\left( 1+x \right)}^{4}}} \\
\end{align}$
$\Rightarrow {f}'''\left( x \right)=6\left( \dfrac{-4}{{{\left( 1+x \right)}^{5}}} \right)\dfrac{d}{dx}\left( 1+x \right)$
$\Rightarrow {f}'''\left( x \right)=\left( \dfrac{-24}{{{\left( 1+x \right)}^{5}}} \right)1$
$\Rightarrow {f}'''\left( x \right)=\dfrac{-24}{{{\left( 1+x \right)}^{5}}}$ ………………. (3)
From (1), (2) and (3), we substitute the value of x equals to zero to calculate the value of the first, second and third derivative of function at point $x=0$.
$\Rightarrow {f}'\left( 0 \right)=\dfrac{-2}{{{\left( 1+0 \right)}^{3}}}$
$\Rightarrow {f}'\left( 0 \right)=\dfrac{-2}{1}=-2$
Now, ${f}''\left( 0 \right)=\dfrac{6}{{{\left( 1+0 \right)}^{4}}}$
$\Rightarrow {f}''\left( x \right)=6$
And, ${f}'''\left( 0 \right)=\dfrac{-24}{{{\left( 1+0 \right)}^{5}}}$
$\Rightarrow {f}'''\left( x \right)=-24$
Also, $f\left( 0 \right)=\dfrac{1}{{{\left( 1+0 \right)}^{2}}}$
$\Rightarrow f\left( 0 \right)=1$
Hence, the value of the first, second and third derivative of function at point $x=0$ is -2, 6 and -18 respectively. We analyze these results and find that they follow a particular pattern.
The McLaurin series is given as $f\left( 0 \right)+\dfrac{{f}'\left( 0 \right)}{1!}x+\dfrac{{f}''\left( 0 \right)}{2!}{{x}^{2}}+\dfrac{{f}'''\left( 0 \right)}{3!}{{x}^{3}}+........\infty $.
Substituting the values in this equation, we get
$1+\dfrac{-2}{1}x+\dfrac{6}{2\times 1}{{x}^{2}}+\dfrac{-24}{3\times 2\times 1}{{x}^{3}}+........\infty $
Therefore, the MacLaurin series is given as $1-\dfrac{2}{1!}x+\dfrac{6}{2!}{{x}^{2}}-\dfrac{24}{3!}{{x}^{3}}+........\infty $
Note: We must have prior knowledge of basic differentiation in order to apply the basic properties like chain rule of differentiation while dealing with mathematical problems. The calculations in this problem must be done carefully and all the negative signs must be taken care while performing rigorous multiplication.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

