
Find the Maclaurin series expansion for the given expression, $\dfrac{1}{{(1 - {x^2})}}$
Answer
523.8k+ views
Hint: These kinds of questions are memory-based questions. Revive the correct formula of the Maclaurin series. Solve individually to avoid any mistakes in the later steps of assembling the expansion. Put the appropriate values in the expansion and get the correct answer.
Complete step by step solution:
The formula for the Taylor series expansion is,
\[\]$\sum\limits_{n = 0}^\infty {\dfrac{{{f^{(n)}}(a)}}{{n!}}{{(x - a)}^n}} $
where a=0 for the Maclaurin series expansion.
If we expand the above formula then it would look like,
\[f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}x + \dfrac{{f''(0)}}{{2!}}{x^2} + \dfrac{{f'''(0)}}{{3!}}{x^3} + \dfrac{{f''''(0)}}{{4!}}{x^4} + .... - - - (i)\]
$\Rightarrow$ $f\left( x \right){\text{ }} = \dfrac{1}{{(1 - {x^2})}}$
$\Rightarrow$\[f'\left( x \right){\text{ }} = \dfrac{{ - 2}}{{{{(1 + x)}^3}}}\]
$\Rightarrow $\[f''\left( x \right){\text{ }} = \dfrac{6}{{{{(1 + x)}^4}}}\]
$\Rightarrow$\[f'''\left( x \right){\text{ }} = \dfrac{{ - 24}}{{{{(1 + x)}^5}}}\]
$\Rightarrow$\[f''''\left( x \right){\text{ }} = \dfrac{{120}}{{{{(1 + x)}^6}}}\]
Putting the required values in place of x,
\[\begin{array}{*{20}{l}}
{f\left( 0 \right) = 0} \\
\Rightarrow {f'\left( 0 \right) = - 2} \\
\Rightarrow {f''\left( 0 \right) = 6} \\
\Rightarrow {f'''\left( 0 \right) = - 24} \\
\Rightarrow {f''''\left( 0 \right) = 120}
\end{array}\]
Assembling all the values collected, in equation (i),
\[
f\left( x \right) = 1 + \dfrac{{ - 2}}{1}x + \dfrac{6}{{2!}}{x^2} + \dfrac{{ - 24}}{{3!}}{x^3} + \dfrac{{120}}{{4!}}{x^4} + .... \\
\Rightarrow f\left( x \right) = 1 + \dfrac{{ - 2}}{1}x + \dfrac{6}{{\left( {2 \times 1} \right)}}{x^2} + \dfrac{{ - 24}}{{\left( {3 \times 2 \times 1} \right)}}{x^3} + \dfrac{{120}}{{\left( {4 \times 3 \times 2 \times 1} \right)}}{x^4} + .... \\
\Rightarrow f\left( x \right) = 1 + \dfrac{{ - 2}}{1}x + \dfrac{6}{2}{x^2} + \dfrac{{ - 24}}{6}{x^3} + \dfrac{{120}}{{24}}{x^4} + .... \\
\Rightarrow f\left( x \right) = 1 - 2x + 3{x^2} - 4{x^3} + 5{x^4} + .... \\
\]
The Maclaurin series expansion of $\dfrac{1}{{(1 - {x^2})}}$ is \[1 - 2x + 3{x^2} - 4{x^3} + 5{x^4} + ....\]\[\]
Note:A Maclaurin series is a Taylor series expansion of a function about 0. Maclaurin series are a kind of series expansion during which all terms are nonnegative integer powers of the variable. The Taylor series of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at one point. For many common functions, the function and also the sum of its Taylor series are equal near this time.
Complete step by step solution:
The formula for the Taylor series expansion is,
\[\]$\sum\limits_{n = 0}^\infty {\dfrac{{{f^{(n)}}(a)}}{{n!}}{{(x - a)}^n}} $
where a=0 for the Maclaurin series expansion.
If we expand the above formula then it would look like,
\[f(x) = f(0) + \dfrac{{f'(0)}}{{1!}}x + \dfrac{{f''(0)}}{{2!}}{x^2} + \dfrac{{f'''(0)}}{{3!}}{x^3} + \dfrac{{f''''(0)}}{{4!}}{x^4} + .... - - - (i)\]
$\Rightarrow$ $f\left( x \right){\text{ }} = \dfrac{1}{{(1 - {x^2})}}$
$\Rightarrow$\[f'\left( x \right){\text{ }} = \dfrac{{ - 2}}{{{{(1 + x)}^3}}}\]
$\Rightarrow $\[f''\left( x \right){\text{ }} = \dfrac{6}{{{{(1 + x)}^4}}}\]
$\Rightarrow$\[f'''\left( x \right){\text{ }} = \dfrac{{ - 24}}{{{{(1 + x)}^5}}}\]
$\Rightarrow$\[f''''\left( x \right){\text{ }} = \dfrac{{120}}{{{{(1 + x)}^6}}}\]
Putting the required values in place of x,
\[\begin{array}{*{20}{l}}
{f\left( 0 \right) = 0} \\
\Rightarrow {f'\left( 0 \right) = - 2} \\
\Rightarrow {f''\left( 0 \right) = 6} \\
\Rightarrow {f'''\left( 0 \right) = - 24} \\
\Rightarrow {f''''\left( 0 \right) = 120}
\end{array}\]
Assembling all the values collected, in equation (i),
\[
f\left( x \right) = 1 + \dfrac{{ - 2}}{1}x + \dfrac{6}{{2!}}{x^2} + \dfrac{{ - 24}}{{3!}}{x^3} + \dfrac{{120}}{{4!}}{x^4} + .... \\
\Rightarrow f\left( x \right) = 1 + \dfrac{{ - 2}}{1}x + \dfrac{6}{{\left( {2 \times 1} \right)}}{x^2} + \dfrac{{ - 24}}{{\left( {3 \times 2 \times 1} \right)}}{x^3} + \dfrac{{120}}{{\left( {4 \times 3 \times 2 \times 1} \right)}}{x^4} + .... \\
\Rightarrow f\left( x \right) = 1 + \dfrac{{ - 2}}{1}x + \dfrac{6}{2}{x^2} + \dfrac{{ - 24}}{6}{x^3} + \dfrac{{120}}{{24}}{x^4} + .... \\
\Rightarrow f\left( x \right) = 1 - 2x + 3{x^2} - 4{x^3} + 5{x^4} + .... \\
\]
The Maclaurin series expansion of $\dfrac{1}{{(1 - {x^2})}}$ is \[1 - 2x + 3{x^2} - 4{x^3} + 5{x^4} + ....\]\[\]
Note:A Maclaurin series is a Taylor series expansion of a function about 0. Maclaurin series are a kind of series expansion during which all terms are nonnegative integer powers of the variable. The Taylor series of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at one point. For many common functions, the function and also the sum of its Taylor series are equal near this time.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

