
Find the locus of the middle points of chords of the parabola which are such that the normals at their extremities meet on the parabola.
Answer
519k+ views
Hint: Take two general points on the parabola and draw normal at those points. The normals should intersect at the parabola.
Complete step-by-step answer:
Consider the above picture. \[A\left( a{{t}^{2}},2at \right)\] and \[B\left( a{{u}^{2}},2au \right)\] are two variable points on the standard parabola \[{{y}^{2}}=4ax\] with parameters \[t\] and \[~u\] respectively.
It is given that \[AC\]and \[BC\] are normal to the parabola at points \[A\] and \[B\] respectively.
We can write equations for \[AC\] and \[BC\] using the formula for normals which is,
Normal at a point with parameter (\[t\]) is given by,
\[y+tx=2at+a{{t}^{3}}\]
So we get equations of lines\[AC\] and \[BC\]as,
\[AC:y+tx=2at+a{{t}^{3}}...(i)\]
\[BC:y+ux=2au+a{{u}^{3}}...(ii)\]
Subtracting equation \[(i)\] from \[(ii)\]i.e.\[\left( ii \right)-\left( i \right)\] we get,
\[\left( y+tx \right)-\left( y+ux \right)=\left( 2at+a{{t}^{3}} \right)-\left( 2au+a{{u}^{3}} \right)\]
\[tx-ux=2at-2au+a{{t}^{3}}-a{{u}^{3}}\]
\[(t-u)x=2a(t-u)+a({{t}^{3}}-{{u}^{3}})\]
\[(t-u)x=2a(t-u)+a(t-u)({{t}^{2}}+{{u}^{2}}+ut)\]
\[x=2a+a({{t}^{2}}+{{u}^{2}}+ut)...(iii)\]
Substituting equation \[\left( iii \right)\] in \[\left( i \right)\] we get,
\[y+t\left( 2a+a({{t}^{2}}+{{u}^{2}}+ut) \right)=2at+a{{t}^{3}}\]
\[y+2at+at({{t}^{2}}+{{u}^{2}}+ut)=2at+a{{t}^{3}}\]
\[y+2at+(a{{t}^{3}}+at{{u}^{2}}+a{{t}^{2}}u)=2at+a{{t}^{3}}\]
\[y+at{{u}^{2}}+a{{t}^{2}}u=0\]
\[y=-at{{u}^{2}}-a{{t}^{2}}u\]
$C=\left( 2a+a{{u}^{2}}+a{{t}^{2}}+aut,-a{{t}^{2}}u-a{{u}^{2}}t \right)$
We are given that point \[C\]also lies on the parabola so it also satisfies the equation \[{{y}^{2}}=4ax\]
So,
${{\left( -a{{t}^{2}}u-a{{u}^{2}}t \right)}^{2}}=4a\left( 2a+a{{u}^{2}}+a{{t}^{2}}+aut \right)$
${{\left[ \left( -aut \right)\left( t+u \right) \right]}^{2}}=4{{a}^{2}}\left( 2+{{u}^{2}}+{{t}^{2}}+ut \right)$
${{\left( -aut \right)}^{2}}{{\left( t+u \right)}^{2}}=4{{a}^{2}}\left( 2+{{u}^{2}}+{{t}^{2}}+ut \right)$
${{\left( ut \right)}^{2}}{{\left( t+u \right)}^{2}}=4\left( 2+{{u}^{2}}+{{t}^{2}}+ut \right)...(iv)$
To find the locus of a point, we consider a point with coordinates\[\left( h,k \right)\], which is a general point on the locus.
Since they lie on the locus it is the midpoint of our variable chord\[AB\].
So using the mid-point formula which is,
Xmid=\[\dfrac{x1+x2}{2}\]
ymid= \[\dfrac{y1+y2}{2}\]
We write,
$\begin{align}
& h=\left\{ \dfrac{\left( x~coordinate~of~A \right)+\left( x~coordinate~of~B \right)}{2} \right\} \\
& k=\left\{ \dfrac{\left( x~coordinate~of~A \right)+\left( x~coordinate~of~B \right)}{2} \right\} \\
\end{align}$
And,
$h=\left\{ \dfrac{\left( \text{a}{{\text{t}}^{2}} \right)+\left( a{{u}^{2}} \right)}{2} \right\}$
$2h=\left( \text{a}{{\text{t}}^{2}} \right)+\left( a{{u}^{2}} \right)$
$\dfrac{2h}{a}=\left\{ {{\text{t}}^{2}}+{{u}^{2}} \right\}...(v)$
$k=\left\{ \dfrac{\left( 2at \right)+\left( 2au \right)}{2} \right\}$
$k=\left( at \right)+\left( au \right)$
$\dfrac{k}{a}=\left\{ t+u \right\}...(vi)$
So our next task in finding the locus is eliminating the variables from the above equations.
Squaring equation\[\left( vi \right)\]and subtracting it from \[\left( v \right)\] i.e. \[{{\left( vi \right)}^{2}}-\left( v \right)\]
Which gives,
${{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}={{\left( t+u \right)}^{2}}-\left\{ {{\text{t}}^{2}}+{{u}^{2}} \right\}$
${{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}=\left( {{t}^{2}}+{{u}^{2}}+2ut \right)-\left\{ {{\text{t}}^{2}}+{{u}^{2}} \right\}$
${{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}=2ut...(vii)$
Substituting equations \[\left( v \right),\left( vi \right),\left( vii \right)\]in\[\left( iv \right)\]we get,
${{\left( \dfrac{{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}}{2} \right)}^{2}}{{\left( \dfrac{k}{a} \right)}^{2}}=4\left( 2+\left( \dfrac{2h}{a} \right)+\left( \dfrac{{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}}{2} \right) \right)$
\[{{\left( {{\left( \dfrac{k}{a} \right)}^{3}}-\dfrac{2h}{a}\left( \dfrac{k}{a} \right) \right)}^{2}}=16\left( 2+\left( \dfrac{2h}{a} \right)+\left( \dfrac{{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}}{2} \right) \right)\]
\[{{\left( {{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a} \right)}^{2}}{{\left( \dfrac{k}{a} \right)}^{2}}=16\left( 2+\left( \dfrac{2h}{a} \right)+\left( \dfrac{{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}}{2} \right) \right)\]
\[{{\left( {{\left( \dfrac{k}{a} \right)}^{3}}-\dfrac{2h}{a}\left( \dfrac{k}{a} \right) \right)}^{2}}=16\left( 2+\left( \dfrac{2h}{a} \right)+\dfrac{1}{2}{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{h}{a} \right)\]
\[{{\left( {{\left( \dfrac{k}{a} \right)}^{3}}-\dfrac{2hk}{{{a}^{2}}} \right)}^{2}}=16\left( 2+\dfrac{h}{a}+\dfrac{1}{2}{{\left( \dfrac{k}{a} \right)}^{2}} \right)\]
Now since \[\left( h,k \right)\]are general points on our locus we can replace \[h\] by \[x\] and \[k\] by \[y\].
\[{{\left( {{\left( \dfrac{y}{a} \right)}^{3}}-\dfrac{2xy}{{{a}^{2}}} \right)}^{2}}=16\left( 2+\dfrac{x}{a}+\dfrac{1}{2}{{\left( \dfrac{y}{a} \right)}^{2}} \right)\]
This is the required locus.
Note: Students have to think carefully while deciding which is the variable before eliminating. In this question students might eliminate \[a\] which will give them the wrong answer. Also they may use their different techniques to eliminate the variable from the equations. Also, if they feel it is redundant to use \[\left( h,k \right)\]first and then replace it as \[\left( x,y \right)\] they may use \[\left( x,y \right)\]from the start as well.
Complete step-by-step answer:

Consider the above picture. \[A\left( a{{t}^{2}},2at \right)\] and \[B\left( a{{u}^{2}},2au \right)\] are two variable points on the standard parabola \[{{y}^{2}}=4ax\] with parameters \[t\] and \[~u\] respectively.
It is given that \[AC\]and \[BC\] are normal to the parabola at points \[A\] and \[B\] respectively.
We can write equations for \[AC\] and \[BC\] using the formula for normals which is,
Normal at a point with parameter (\[t\]) is given by,
\[y+tx=2at+a{{t}^{3}}\]
So we get equations of lines\[AC\] and \[BC\]as,
\[AC:y+tx=2at+a{{t}^{3}}...(i)\]
\[BC:y+ux=2au+a{{u}^{3}}...(ii)\]
Subtracting equation \[(i)\] from \[(ii)\]i.e.\[\left( ii \right)-\left( i \right)\] we get,
\[\left( y+tx \right)-\left( y+ux \right)=\left( 2at+a{{t}^{3}} \right)-\left( 2au+a{{u}^{3}} \right)\]
\[tx-ux=2at-2au+a{{t}^{3}}-a{{u}^{3}}\]
\[(t-u)x=2a(t-u)+a({{t}^{3}}-{{u}^{3}})\]
\[(t-u)x=2a(t-u)+a(t-u)({{t}^{2}}+{{u}^{2}}+ut)\]
\[x=2a+a({{t}^{2}}+{{u}^{2}}+ut)...(iii)\]
Substituting equation \[\left( iii \right)\] in \[\left( i \right)\] we get,
\[y+t\left( 2a+a({{t}^{2}}+{{u}^{2}}+ut) \right)=2at+a{{t}^{3}}\]
\[y+2at+at({{t}^{2}}+{{u}^{2}}+ut)=2at+a{{t}^{3}}\]
\[y+2at+(a{{t}^{3}}+at{{u}^{2}}+a{{t}^{2}}u)=2at+a{{t}^{3}}\]
\[y+at{{u}^{2}}+a{{t}^{2}}u=0\]
\[y=-at{{u}^{2}}-a{{t}^{2}}u\]
$C=\left( 2a+a{{u}^{2}}+a{{t}^{2}}+aut,-a{{t}^{2}}u-a{{u}^{2}}t \right)$
We are given that point \[C\]also lies on the parabola so it also satisfies the equation \[{{y}^{2}}=4ax\]
So,
${{\left( -a{{t}^{2}}u-a{{u}^{2}}t \right)}^{2}}=4a\left( 2a+a{{u}^{2}}+a{{t}^{2}}+aut \right)$
${{\left[ \left( -aut \right)\left( t+u \right) \right]}^{2}}=4{{a}^{2}}\left( 2+{{u}^{2}}+{{t}^{2}}+ut \right)$
${{\left( -aut \right)}^{2}}{{\left( t+u \right)}^{2}}=4{{a}^{2}}\left( 2+{{u}^{2}}+{{t}^{2}}+ut \right)$
${{\left( ut \right)}^{2}}{{\left( t+u \right)}^{2}}=4\left( 2+{{u}^{2}}+{{t}^{2}}+ut \right)...(iv)$
To find the locus of a point, we consider a point with coordinates\[\left( h,k \right)\], which is a general point on the locus.
Since they lie on the locus it is the midpoint of our variable chord\[AB\].
So using the mid-point formula which is,
Xmid=\[\dfrac{x1+x2}{2}\]
ymid= \[\dfrac{y1+y2}{2}\]
We write,
$\begin{align}
& h=\left\{ \dfrac{\left( x~coordinate~of~A \right)+\left( x~coordinate~of~B \right)}{2} \right\} \\
& k=\left\{ \dfrac{\left( x~coordinate~of~A \right)+\left( x~coordinate~of~B \right)}{2} \right\} \\
\end{align}$
And,
$h=\left\{ \dfrac{\left( \text{a}{{\text{t}}^{2}} \right)+\left( a{{u}^{2}} \right)}{2} \right\}$
$2h=\left( \text{a}{{\text{t}}^{2}} \right)+\left( a{{u}^{2}} \right)$
$\dfrac{2h}{a}=\left\{ {{\text{t}}^{2}}+{{u}^{2}} \right\}...(v)$
$k=\left\{ \dfrac{\left( 2at \right)+\left( 2au \right)}{2} \right\}$
$k=\left( at \right)+\left( au \right)$
$\dfrac{k}{a}=\left\{ t+u \right\}...(vi)$
So our next task in finding the locus is eliminating the variables from the above equations.
Squaring equation\[\left( vi \right)\]and subtracting it from \[\left( v \right)\] i.e. \[{{\left( vi \right)}^{2}}-\left( v \right)\]
Which gives,
${{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}={{\left( t+u \right)}^{2}}-\left\{ {{\text{t}}^{2}}+{{u}^{2}} \right\}$
${{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}=\left( {{t}^{2}}+{{u}^{2}}+2ut \right)-\left\{ {{\text{t}}^{2}}+{{u}^{2}} \right\}$
${{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}=2ut...(vii)$
Substituting equations \[\left( v \right),\left( vi \right),\left( vii \right)\]in\[\left( iv \right)\]we get,
${{\left( \dfrac{{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}}{2} \right)}^{2}}{{\left( \dfrac{k}{a} \right)}^{2}}=4\left( 2+\left( \dfrac{2h}{a} \right)+\left( \dfrac{{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}}{2} \right) \right)$
\[{{\left( {{\left( \dfrac{k}{a} \right)}^{3}}-\dfrac{2h}{a}\left( \dfrac{k}{a} \right) \right)}^{2}}=16\left( 2+\left( \dfrac{2h}{a} \right)+\left( \dfrac{{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}}{2} \right) \right)\]
\[{{\left( {{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a} \right)}^{2}}{{\left( \dfrac{k}{a} \right)}^{2}}=16\left( 2+\left( \dfrac{2h}{a} \right)+\left( \dfrac{{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}}{2} \right) \right)\]
\[{{\left( {{\left( \dfrac{k}{a} \right)}^{3}}-\dfrac{2h}{a}\left( \dfrac{k}{a} \right) \right)}^{2}}=16\left( 2+\left( \dfrac{2h}{a} \right)+\dfrac{1}{2}{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{h}{a} \right)\]
\[{{\left( {{\left( \dfrac{k}{a} \right)}^{3}}-\dfrac{2hk}{{{a}^{2}}} \right)}^{2}}=16\left( 2+\dfrac{h}{a}+\dfrac{1}{2}{{\left( \dfrac{k}{a} \right)}^{2}} \right)\]
Now since \[\left( h,k \right)\]are general points on our locus we can replace \[h\] by \[x\] and \[k\] by \[y\].
\[{{\left( {{\left( \dfrac{y}{a} \right)}^{3}}-\dfrac{2xy}{{{a}^{2}}} \right)}^{2}}=16\left( 2+\dfrac{x}{a}+\dfrac{1}{2}{{\left( \dfrac{y}{a} \right)}^{2}} \right)\]
This is the required locus.
Note: Students have to think carefully while deciding which is the variable before eliminating. In this question students might eliminate \[a\] which will give them the wrong answer. Also they may use their different techniques to eliminate the variable from the equations. Also, if they feel it is redundant to use \[\left( h,k \right)\]first and then replace it as \[\left( x,y \right)\] they may use \[\left( x,y \right)\]from the start as well.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
