Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Find the locus of the middle points of chords of the parabola which are such that the normals at their extremities meet on the parabola.

Answer
VerifiedVerified
519k+ views
Hint: Take two general points on the parabola and draw normal at those points. The normals should intersect at the parabola.

Complete step-by-step answer:
seo images

Consider the above picture. \[A\left( a{{t}^{2}},2at \right)\] and \[B\left( a{{u}^{2}},2au \right)\] are two variable points on the standard parabola \[{{y}^{2}}=4ax\] with parameters \[t\] and \[~u\] respectively.
It is given that \[AC\]and \[BC\] are normal to the parabola at points \[A\] and \[B\] respectively.
We can write equations for \[AC\] and \[BC\] using the formula for normals which is,
Normal at a point with parameter (\[t\]) is given by,
\[y+tx=2at+a{{t}^{3}}\]
So we get equations of lines\[AC\] and \[BC\]as,
\[AC:y+tx=2at+a{{t}^{3}}...(i)\]
\[BC:y+ux=2au+a{{u}^{3}}...(ii)\]
Subtracting equation \[(i)\] from \[(ii)\]i.e.\[\left( ii \right)-\left( i \right)\] we get,
\[\left( y+tx \right)-\left( y+ux \right)=\left( 2at+a{{t}^{3}} \right)-\left( 2au+a{{u}^{3}} \right)\]
\[tx-ux=2at-2au+a{{t}^{3}}-a{{u}^{3}}\]
\[(t-u)x=2a(t-u)+a({{t}^{3}}-{{u}^{3}})\]
\[(t-u)x=2a(t-u)+a(t-u)({{t}^{2}}+{{u}^{2}}+ut)\]
\[x=2a+a({{t}^{2}}+{{u}^{2}}+ut)...(iii)\]
Substituting equation \[\left( iii \right)\] in \[\left( i \right)\] we get,
\[y+t\left( 2a+a({{t}^{2}}+{{u}^{2}}+ut) \right)=2at+a{{t}^{3}}\]
\[y+2at+at({{t}^{2}}+{{u}^{2}}+ut)=2at+a{{t}^{3}}\]
\[y+2at+(a{{t}^{3}}+at{{u}^{2}}+a{{t}^{2}}u)=2at+a{{t}^{3}}\]
\[y+at{{u}^{2}}+a{{t}^{2}}u=0\]
\[y=-at{{u}^{2}}-a{{t}^{2}}u\]
$C=\left( 2a+a{{u}^{2}}+a{{t}^{2}}+aut,-a{{t}^{2}}u-a{{u}^{2}}t \right)$
We are given that point \[C\]also lies on the parabola so it also satisfies the equation \[{{y}^{2}}=4ax\]
So,
${{\left( -a{{t}^{2}}u-a{{u}^{2}}t \right)}^{2}}=4a\left( 2a+a{{u}^{2}}+a{{t}^{2}}+aut \right)$
${{\left[ \left( -aut \right)\left( t+u \right) \right]}^{2}}=4{{a}^{2}}\left( 2+{{u}^{2}}+{{t}^{2}}+ut \right)$
${{\left( -aut \right)}^{2}}{{\left( t+u \right)}^{2}}=4{{a}^{2}}\left( 2+{{u}^{2}}+{{t}^{2}}+ut \right)$
${{\left( ut \right)}^{2}}{{\left( t+u \right)}^{2}}=4\left( 2+{{u}^{2}}+{{t}^{2}}+ut \right)...(iv)$
To find the locus of a point, we consider a point with coordinates\[\left( h,k \right)\], which is a general point on the locus.
Since they lie on the locus it is the midpoint of our variable chord\[AB\].
So using the mid-point formula which is,
Xmid=\[\dfrac{x1+x2}{2}\]
ymid= \[\dfrac{y1+y2}{2}\]
We write,
$\begin{align}
  & h=\left\{ \dfrac{\left( x~coordinate~of~A \right)+\left( x~coordinate~of~B \right)}{2} \right\} \\
 & k=\left\{ \dfrac{\left( x~coordinate~of~A \right)+\left( x~coordinate~of~B \right)}{2} \right\} \\
\end{align}$
And,
$h=\left\{ \dfrac{\left( \text{a}{{\text{t}}^{2}} \right)+\left( a{{u}^{2}} \right)}{2} \right\}$
$2h=\left( \text{a}{{\text{t}}^{2}} \right)+\left( a{{u}^{2}} \right)$
$\dfrac{2h}{a}=\left\{ {{\text{t}}^{2}}+{{u}^{2}} \right\}...(v)$
$k=\left\{ \dfrac{\left( 2at \right)+\left( 2au \right)}{2} \right\}$
$k=\left( at \right)+\left( au \right)$
$\dfrac{k}{a}=\left\{ t+u \right\}...(vi)$
So our next task in finding the locus is eliminating the variables from the above equations.
Squaring equation\[\left( vi \right)\]and subtracting it from \[\left( v \right)\] i.e. \[{{\left( vi \right)}^{2}}-\left( v \right)\]
Which gives,
${{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}={{\left( t+u \right)}^{2}}-\left\{ {{\text{t}}^{2}}+{{u}^{2}} \right\}$
${{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}=\left( {{t}^{2}}+{{u}^{2}}+2ut \right)-\left\{ {{\text{t}}^{2}}+{{u}^{2}} \right\}$
${{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}=2ut...(vii)$
Substituting equations \[\left( v \right),\left( vi \right),\left( vii \right)\]in\[\left( iv \right)\]we get,
${{\left( \dfrac{{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}}{2} \right)}^{2}}{{\left( \dfrac{k}{a} \right)}^{2}}=4\left( 2+\left( \dfrac{2h}{a} \right)+\left( \dfrac{{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}}{2} \right) \right)$
\[{{\left( {{\left( \dfrac{k}{a} \right)}^{3}}-\dfrac{2h}{a}\left( \dfrac{k}{a} \right) \right)}^{2}}=16\left( 2+\left( \dfrac{2h}{a} \right)+\left( \dfrac{{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}}{2} \right) \right)\]
\[{{\left( {{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a} \right)}^{2}}{{\left( \dfrac{k}{a} \right)}^{2}}=16\left( 2+\left( \dfrac{2h}{a} \right)+\left( \dfrac{{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}}{2} \right) \right)\]
\[{{\left( {{\left( \dfrac{k}{a} \right)}^{3}}-\dfrac{2h}{a}\left( \dfrac{k}{a} \right) \right)}^{2}}=16\left( 2+\left( \dfrac{2h}{a} \right)+\dfrac{1}{2}{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{h}{a} \right)\]
\[{{\left( {{\left( \dfrac{k}{a} \right)}^{3}}-\dfrac{2hk}{{{a}^{2}}} \right)}^{2}}=16\left( 2+\dfrac{h}{a}+\dfrac{1}{2}{{\left( \dfrac{k}{a} \right)}^{2}} \right)\]
Now since \[\left( h,k \right)\]are general points on our locus we can replace \[h\] by \[x\] and \[k\] by \[y\].
\[{{\left( {{\left( \dfrac{y}{a} \right)}^{3}}-\dfrac{2xy}{{{a}^{2}}} \right)}^{2}}=16\left( 2+\dfrac{x}{a}+\dfrac{1}{2}{{\left( \dfrac{y}{a} \right)}^{2}} \right)\]
This is the required locus.

Note: Students have to think carefully while deciding which is the variable before eliminating. In this question students might eliminate \[a\] which will give them the wrong answer. Also they may use their different techniques to eliminate the variable from the equations. Also, if they feel it is redundant to use \[\left( h,k \right)\]first and then replace it as \[\left( x,y \right)\] they may use \[\left( x,y \right)\]from the start as well.