
Find the limit: \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{2}^{3x}}-{{3}^{x}}}{\sin 3x}\].
Answer
585.9k+ views
Hint: L-Hospital rule is used if the value of limit is equal to \[\dfrac{0}{0}\] (or) \[\dfrac{\infty }{\infty }\]. According to L-hospital rule, if \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}\]is equal \[\dfrac{0}{0}\] (or) \[\dfrac{\infty }{\infty }\], then \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f’(x)}{g’(x)}\]. For any other conditions, L-hospital should not be used. L-hospital is used to evaluate limits for indeterminate forms.
Complete step-by-step solution -
From the question, it is clear that we needed to find the value of \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{2}^{3x}}-{{3}^{x}}}{\sin 3x}\].
Let us assume \[L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{2}^{3x}}-{{3}^{x}}}{\sin 3x}\].
\[\begin{align}
& \Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{2}^{3(0)}}-{{3}^{(0)}}}{\sin 3(0)} \\
& \Rightarrow L=\dfrac{{{2}^{0}}-{{3}^{0}}}{\sin 0} \\
& \Rightarrow L=\dfrac{1-1}{0} \\
& \Rightarrow L=\dfrac{0}{0} \\
\end{align}\]
If a limit of a function \[\dfrac{f(x)}{g(x)}\] is \[\dfrac{0}{0}\] (or) \[\dfrac{\infty }{\infty }\], then L-Hospital rule is used.
According to L-hospital rule, if \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}\]is equal \[\dfrac{0}{0}\] (or) \[\dfrac{\infty }{\infty }\], then \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f’(x)}{g’(x)}\].
As the value of \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{2}^{3x}}-{{3}^{x}}}{\sin 3x}\] is equal to \[\dfrac{0}{0}\], we should use L-Hospital rule.
\[\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{2}^{3x}}-{{3}^{x}}}{\sin 3x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}({{2}^{3x}}-{{3}^{x}})}{\dfrac{d}{dx}(\sin 3x)}\]
\[\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}({{2}^{3x}})-\dfrac{d}{dx}({{3}^{x}})}{\dfrac{d}{dx}(\sin 3x)}\]
\[\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}({{8}^{x}})-\dfrac{d}{dx}({{3}^{x}})}{\dfrac{d}{dx}(\sin 3x)}\]
We know that \[\dfrac{d}{dx}({{a}^{x}})={{a}^{x}}\log a\] where a is constant.
\[\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{({{8}^{x}}\log 8)-({{3}^{x}}log3)}{\dfrac{d}{dx}(\sin 3x)}\]
We know that \[\dfrac{d}{dx}(\sin ax)=a\cos ax\] where a is constant.
\[\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{({{8}^{x}}\log 8)-({{3}^{x}}log3)}{3\cos 3x}\]
\[\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{({{8}^{x}}\log {{2}^{3}})-({{3}^{x}}log3)}{3\cos 3x}\]
We know that \[{{\operatorname{logx}}^{a}}=a\log x\].
\[\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{({{8}^{x}}(3\log 2))-({{3}^{x}}log3)}{3\cos 3x}\]
\[\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( {{2}^{3}} \right)}^{x}}(3\log 2)-({{3}^{x}}\log 3)}{3\cos 3x}\]
\[\Rightarrow L=\dfrac{{{({{2}^{3}})}^{0}}(3\log 2)-({{3}^{0}}\log 3)}{3\cos 3(0)}\]
\[\Rightarrow L=\dfrac{(3log2-log3)}{3\cos 0}\]
\[\Rightarrow L=\dfrac{\log 8-\log 3}{3(1)}\]
\[\Rightarrow L=\dfrac{\log \left( \dfrac{8}{3} \right)}{3}\]
Hence, the limit of \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{2}^{3x}}-{{3}^{x}}}{\sin 3x}\] is equal to \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\log \left( \dfrac{8}{3} \right)}{3}\].
Note: We needed to apply L-hospital if and only if the value of limit is equal \[\dfrac{0}{0}\] (or) \[\dfrac{\infty }{\infty }\]. If the value of limit is obtained in other forms, we should not apply to L-Hospital. If \[\underset{x\to a}{\mathop{\lim }}\,f{{(x)}^{g(x)}}\] is equal to \[{{1}^{\infty }}\], then the value of limit of function is \[\underset{x\to a}{\mathop{\lim }}\,f{{(x)}^{g(x)}}={{e}^{\underset{x\to a}{\mathop{\lim }}\,(f(x)-1)g(x)}}\]. We should be careful while using the formulae of logarithms. We should remember that \[\log (a-b)=\log a-\log b\] is not correct. \[\log (a-b)=\log \left( \dfrac{a}{b} \right)\] is correct. Students may go wrong at this point.
Complete step-by-step solution -
From the question, it is clear that we needed to find the value of \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{2}^{3x}}-{{3}^{x}}}{\sin 3x}\].
Let us assume \[L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{2}^{3x}}-{{3}^{x}}}{\sin 3x}\].
\[\begin{align}
& \Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{2}^{3(0)}}-{{3}^{(0)}}}{\sin 3(0)} \\
& \Rightarrow L=\dfrac{{{2}^{0}}-{{3}^{0}}}{\sin 0} \\
& \Rightarrow L=\dfrac{1-1}{0} \\
& \Rightarrow L=\dfrac{0}{0} \\
\end{align}\]
If a limit of a function \[\dfrac{f(x)}{g(x)}\] is \[\dfrac{0}{0}\] (or) \[\dfrac{\infty }{\infty }\], then L-Hospital rule is used.
According to L-hospital rule, if \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}\]is equal \[\dfrac{0}{0}\] (or) \[\dfrac{\infty }{\infty }\], then \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f’(x)}{g’(x)}\].
As the value of \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{2}^{3x}}-{{3}^{x}}}{\sin 3x}\] is equal to \[\dfrac{0}{0}\], we should use L-Hospital rule.
\[\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{2}^{3x}}-{{3}^{x}}}{\sin 3x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}({{2}^{3x}}-{{3}^{x}})}{\dfrac{d}{dx}(\sin 3x)}\]
\[\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}({{2}^{3x}})-\dfrac{d}{dx}({{3}^{x}})}{\dfrac{d}{dx}(\sin 3x)}\]
\[\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}({{8}^{x}})-\dfrac{d}{dx}({{3}^{x}})}{\dfrac{d}{dx}(\sin 3x)}\]
We know that \[\dfrac{d}{dx}({{a}^{x}})={{a}^{x}}\log a\] where a is constant.
\[\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{({{8}^{x}}\log 8)-({{3}^{x}}log3)}{\dfrac{d}{dx}(\sin 3x)}\]
We know that \[\dfrac{d}{dx}(\sin ax)=a\cos ax\] where a is constant.
\[\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{({{8}^{x}}\log 8)-({{3}^{x}}log3)}{3\cos 3x}\]
\[\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{({{8}^{x}}\log {{2}^{3}})-({{3}^{x}}log3)}{3\cos 3x}\]
We know that \[{{\operatorname{logx}}^{a}}=a\log x\].
\[\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{({{8}^{x}}(3\log 2))-({{3}^{x}}log3)}{3\cos 3x}\]
\[\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( {{2}^{3}} \right)}^{x}}(3\log 2)-({{3}^{x}}\log 3)}{3\cos 3x}\]
\[\Rightarrow L=\dfrac{{{({{2}^{3}})}^{0}}(3\log 2)-({{3}^{0}}\log 3)}{3\cos 3(0)}\]
\[\Rightarrow L=\dfrac{(3log2-log3)}{3\cos 0}\]
\[\Rightarrow L=\dfrac{\log 8-\log 3}{3(1)}\]
\[\Rightarrow L=\dfrac{\log \left( \dfrac{8}{3} \right)}{3}\]
Hence, the limit of \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{2}^{3x}}-{{3}^{x}}}{\sin 3x}\] is equal to \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\log \left( \dfrac{8}{3} \right)}{3}\].
Note: We needed to apply L-hospital if and only if the value of limit is equal \[\dfrac{0}{0}\] (or) \[\dfrac{\infty }{\infty }\]. If the value of limit is obtained in other forms, we should not apply to L-Hospital. If \[\underset{x\to a}{\mathop{\lim }}\,f{{(x)}^{g(x)}}\] is equal to \[{{1}^{\infty }}\], then the value of limit of function is \[\underset{x\to a}{\mathop{\lim }}\,f{{(x)}^{g(x)}}={{e}^{\underset{x\to a}{\mathop{\lim }}\,(f(x)-1)g(x)}}\]. We should be careful while using the formulae of logarithms. We should remember that \[\log (a-b)=\log a-\log b\] is not correct. \[\log (a-b)=\log \left( \dfrac{a}{b} \right)\] is correct. Students may go wrong at this point.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

