
How do you find the limit of \[\dfrac{{{{\tan }^2}x}}{x}\] as \[x \to 0?\]
Answer
556.8k+ views
Hint: This question involves the operation of addition/ subtraction/ multiplication/ division. We need to know how to expand the square terms. We need to know the basic trigonometric conditions. We need to know how to apply the limit with the given equation. We need to know the trigonometric table values to make the easy calculation.
Complete step-by-step answer:
The given equation in the question is shown below,
\[\dfrac{{{{\tan }^2}x}}{x}\] as \[x \to 0?\]
The above equation can also be written as,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}x}}{x} = ?\] \[ \to \left( 1 \right)\]
To solve the above equation, we have to solve the above-mentioned term as follows,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}x}}{x} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x}.\tan x \to \left( 2 \right)\]
We know that,
\[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
So, the equation \[\left( 2 \right)\] can be written as,
\[
\left( 2 \right) \to \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}x}}{x} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} \cdot \tan x \\
\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} \cdot \tan x = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{{\sin x}}{{\cos x}} \\
\]
The above equation can also be written as,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{1}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{{\sin x}}{{\cos x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}}\]
We know that,
\[\cos x \cdot \cos x = {\cos ^2}x\]
So, we get
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \sin x \cdot \dfrac{1}{{{{\cos }^2}x}}\]
Let’s apply the limit in the above equation we get,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \mathop {\lim }\limits_{x \to 0} \sin x \cdot \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{{\cos }^2}x}} \to \left( 3 \right)\]
Here, we have \[\mathop {\lim }\limits_{x \to 0} \] , so we would put zero for where we have \[x\] .
For solving the equation \[\left( 3 \right)\] , we have
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x}\]
We can’t apply the mentioned limit in the above equation, because if we apply the limit the denominator becomes zero. We know that the denominator would not be equal to zero.
Next, we have
\[\mathop {\lim }\limits_{x \to 0} \sin x = \sin \left( 0 \right) = 0\] (By using trigonometric table values.)
Next, we have
\[\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{{\cos }^2}x}} = \dfrac{1}{{{{\cos }^2}\left( 0 \right)}}\]
We know that
\[\cos 0 = 1\]
So, we get
\[\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{{\cos }^2}x}} = \dfrac{1}{{{{\cos }^2}\left( 0 \right)}} = \dfrac{1}{{{1^2}}} = 1\]
By using these values the equation \[\left( 3 \right)\] becomes,
\[\left( 3 \right) \to \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \mathop {\lim }\limits_{x \to 0} \sin x \cdot \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{{\cos }^2}x}}\]
\[
\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot 0 \cdot 0 \\
\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}} = 0 \\
\]
(We know that if any term multiplies with \[0\] the answer becomes \[0\] .)
So, the final answer is,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}x}}{x} = 0\]
So, the correct answer is “0”.
Note: Note that the denominator term would not be equal to zero and when any number is multiplied with zero the answer is always zero. \[\mathop {\lim }\limits_{x \to 0} \] means we would apply zero for where we have the term \[x\] . Remember the basic trigonometric conditions and trigonometric table values. This type of question involves basic arithmetic operations.
Complete step-by-step answer:
The given equation in the question is shown below,
\[\dfrac{{{{\tan }^2}x}}{x}\] as \[x \to 0?\]
The above equation can also be written as,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}x}}{x} = ?\] \[ \to \left( 1 \right)\]
To solve the above equation, we have to solve the above-mentioned term as follows,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}x}}{x} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x}.\tan x \to \left( 2 \right)\]
We know that,
\[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
So, the equation \[\left( 2 \right)\] can be written as,
\[
\left( 2 \right) \to \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}x}}{x} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} \cdot \tan x \\
\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} \cdot \tan x = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{{\sin x}}{{\cos x}} \\
\]
The above equation can also be written as,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{1}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{{\sin x}}{{\cos x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}}\]
We know that,
\[\cos x \cdot \cos x = {\cos ^2}x\]
So, we get
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \sin x \cdot \dfrac{1}{{{{\cos }^2}x}}\]
Let’s apply the limit in the above equation we get,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \mathop {\lim }\limits_{x \to 0} \sin x \cdot \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{{\cos }^2}x}} \to \left( 3 \right)\]
Here, we have \[\mathop {\lim }\limits_{x \to 0} \] , so we would put zero for where we have \[x\] .
For solving the equation \[\left( 3 \right)\] , we have
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x}\]
We can’t apply the mentioned limit in the above equation, because if we apply the limit the denominator becomes zero. We know that the denominator would not be equal to zero.
Next, we have
\[\mathop {\lim }\limits_{x \to 0} \sin x = \sin \left( 0 \right) = 0\] (By using trigonometric table values.)
Next, we have
\[\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{{\cos }^2}x}} = \dfrac{1}{{{{\cos }^2}\left( 0 \right)}}\]
We know that
\[\cos 0 = 1\]
So, we get
\[\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{{\cos }^2}x}} = \dfrac{1}{{{{\cos }^2}\left( 0 \right)}} = \dfrac{1}{{{1^2}}} = 1\]
By using these values the equation \[\left( 3 \right)\] becomes,
\[\left( 3 \right) \to \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \mathop {\lim }\limits_{x \to 0} \sin x \cdot \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{{\cos }^2}x}}\]
\[
\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot 0 \cdot 0 \\
\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} \cdot \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{1}{{\cos x}} = 0 \\
\]
(We know that if any term multiplies with \[0\] the answer becomes \[0\] .)
So, the final answer is,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}x}}{x} = 0\]
So, the correct answer is “0”.
Note: Note that the denominator term would not be equal to zero and when any number is multiplied with zero the answer is always zero. \[\mathop {\lim }\limits_{x \to 0} \] means we would apply zero for where we have the term \[x\] . Remember the basic trigonometric conditions and trigonometric table values. This type of question involves basic arithmetic operations.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

