
How do you find the limit of $ \dfrac{{\sin x}}{{x + \sin x}} $ as $ x \to 0 $ ?
Answer
556.5k+ views
Hint: First we take the given trigonometry $ \dfrac{{\sin x}}{{x + \sin x}} $ .This we write in limit is $ \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{{x + \sin x}} $ . Then we use L’ Hospital’s rule and evaluate the resulting expression at zero. After that we compute the derivative of the numerator and compute the derivative of the denominator. Now the derivative substitute in the given equation. After that we apply the limit, hence we get the solution.
Complete Step by Step Solution:
The given trigonometry is $ \dfrac{{\sin x}}{{x + \sin x}} $ as $ x \to 0 $
This write-in limit is
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{{x + \sin x}} $
We find, $ \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{{x + \sin x}} $ =?
We use L’ Hospital’s rule and evaluate the resulting expression at zero.
Because the expression evaluated at zero, is indeterminate, $ \dfrac{0}{0} $ , the use of L’ Hospital’s rule is warranted.
Compute the derivative of the numerator:
$ \Rightarrow \dfrac{{d(\sin (x))}}{{dx}} = \cos (x) $
Compute the derivative of the denominator:
$ \Rightarrow \dfrac{{d(x + \sin (x))}}{{dx}} = 1 + \cos (x) $
Now derivative of $ \sin x $ and $ 1 + \sin x $ substitute in the given trigonometry
$ \Rightarrow \dfrac{{\cos (x)}}{{1 + \cos (x)}} $
Now we take the limit as $ x \to 0 $
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\cos (x)}}{{1 + \cos (x)}} $
Now apply the limit as $ x \to 0 $
$ \Rightarrow \dfrac{{\cos (0)}}{{1 + \cos (0)}} $
Now, $ \cos (0) = 1 $
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{{x + \sin x}} = \dfrac{1}{{1 + 1}} $
Add denominator
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{{x + \sin x}} = \dfrac{1}{2} $
Hence the limit of $ \dfrac{{\sin x}}{{x + \sin x}} $ as $ x \to 0 $ is $ \dfrac{1}{2} $
Note: L’Hospital’s rule can us calculate a limit that may otherwise be hard or impossible. It says that the limit when we divide one function by another is the same after we take the derivative of each function (with some special conditions shown later). In symbols we can write: $ \mathop {\lim }\limits_{x \to c} \dfrac{{f(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to c} \dfrac{{f'(x)}}{{g'(x)}} $
Cases: We have already seen a $ \dfrac{0}{0} $ and $ \dfrac{\infty }{\infty } $ example, here are all the indeterminate form forms that L’hopital’s rule may be able to help with:
$ \dfrac{0}{0},\dfrac{\infty }{\infty },{1^\infty },{0^0},{\infty ^0} $
For a limit approaching $ c $ , the original functions must be differentiable on either side of $ c $ , but not necessarily at $ c $ . Likewise $ g'(x) $ were not equal to zero on either side $ c $ .
Complete Step by Step Solution:
The given trigonometry is $ \dfrac{{\sin x}}{{x + \sin x}} $ as $ x \to 0 $
This write-in limit is
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{{x + \sin x}} $
We find, $ \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{{x + \sin x}} $ =?
We use L’ Hospital’s rule and evaluate the resulting expression at zero.
Because the expression evaluated at zero, is indeterminate, $ \dfrac{0}{0} $ , the use of L’ Hospital’s rule is warranted.
Compute the derivative of the numerator:
$ \Rightarrow \dfrac{{d(\sin (x))}}{{dx}} = \cos (x) $
Compute the derivative of the denominator:
$ \Rightarrow \dfrac{{d(x + \sin (x))}}{{dx}} = 1 + \cos (x) $
Now derivative of $ \sin x $ and $ 1 + \sin x $ substitute in the given trigonometry
$ \Rightarrow \dfrac{{\cos (x)}}{{1 + \cos (x)}} $
Now we take the limit as $ x \to 0 $
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\cos (x)}}{{1 + \cos (x)}} $
Now apply the limit as $ x \to 0 $
$ \Rightarrow \dfrac{{\cos (0)}}{{1 + \cos (0)}} $
Now, $ \cos (0) = 1 $
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{{x + \sin x}} = \dfrac{1}{{1 + 1}} $
Add denominator
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{{x + \sin x}} = \dfrac{1}{2} $
Hence the limit of $ \dfrac{{\sin x}}{{x + \sin x}} $ as $ x \to 0 $ is $ \dfrac{1}{2} $
Note: L’Hospital’s rule can us calculate a limit that may otherwise be hard or impossible. It says that the limit when we divide one function by another is the same after we take the derivative of each function (with some special conditions shown later). In symbols we can write: $ \mathop {\lim }\limits_{x \to c} \dfrac{{f(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to c} \dfrac{{f'(x)}}{{g'(x)}} $
Cases: We have already seen a $ \dfrac{0}{0} $ and $ \dfrac{\infty }{\infty } $ example, here are all the indeterminate form forms that L’hopital’s rule may be able to help with:
$ \dfrac{0}{0},\dfrac{\infty }{\infty },{1^\infty },{0^0},{\infty ^0} $
For a limit approaching $ c $ , the original functions must be differentiable on either side of $ c $ , but not necessarily at $ c $ . Likewise $ g'(x) $ were not equal to zero on either side $ c $ .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

