
How do you find the limit of $\dfrac{\left| x+2 \right|}{x+2}$ as $x$ approaches $-2$?
Answer
543.6k+ views
Hint: In this problem we need to calculate the limit value of the given function at given $x$ value. For this we will first check whether the given function exists at the limit value or not at a given $x$ value. So, we will first calculate the limit from the left at given $x$ value and the limit from the right at given $x$ value. For this we will write first define the given function by using the known function definition $\left| x \right|=\left\{ \begin{matrix}
x,\text{ if }x\ge 0 \\
-x,\text{ if }x<0 \\
\end{matrix} \right.$. We will this function definition to define the function $\left| x+2 \right|$. After defining the function, we will calculate the right-hand limit and left-hand limit and then we will conclude the problem by comparing both the values.
Complete step-by-step solution:
Given function, $\dfrac{\left| x+2 \right|}{x+2}$.
We know that the value of the function $\left| x \right|$ is
$\left| x \right|=\left\{ \begin{matrix}
x,\text{ if }x\ge 0 \\
-x,\text{ if }x<0 \\
\end{matrix} \right.$
From the above definition, the value of the function $\left| x+2 \right|$ will be
$\left| x+2 \right|=\left\{ \begin{matrix}
x+2,\text{ if }x\ge -2 \\
-\left( x+2 \right),\text{ if }x<-2 \\
\end{matrix} \right.$
Given that $x$ approaches $-2$.
Calculating the left-hand side limit or limit from the left-hand side.
Left hand side limit means the value of $x$ is less than $-2$ i.e., $x<-2$.
If $x<-2$ the value of the function $\left| x+2 \right|$ is
$\left| x+2 \right|=-\left( x+2 \right)$
From the above value the value of the given function $\dfrac{\left| x+2 \right|}{x+2}$ will be
$\begin{align}
& \dfrac{\left| x+2 \right|}{x+2}=\dfrac{-\left( x+2 \right)}{x+2} \\
& \Rightarrow \dfrac{\left| x+2 \right|}{x+2}=-1 \\
\end{align}$
Applying the left-hand limit to the given function, then we will get
$\begin{align}
& \displaystyle \lim_{x \to -{{2}^{-}}}\dfrac{\left| x+2 \right|}{x+2}=\displaystyle \lim_{x \to -{{2}^{-}}}-1 \\
& \Rightarrow \displaystyle \lim_{x \to -{{2}^{-}}}\dfrac{\left| x+2 \right|}{x+2}=-1 \\
\end{align}$
Calculating the right-hand limit or limit from the right hand side.
Right hand side limit means $x>-2$.
If $x>-2$ the value of the function $\left| x+2 \right|$ is
$\left| x+2 \right|=x+2$
From the above value the value of the given function $\dfrac{\left| x+2 \right|}{x+2}$ will be
$\begin{align}
& \dfrac{\left| x+2 \right|}{x+2}=\dfrac{x+2}{x+2} \\
& \Rightarrow \dfrac{\left| x+2 \right|}{x+2}=1 \\
\end{align}$
Applying the right-hand limit to the given function, then we will get
$\begin{align}
& \displaystyle \lim_{x \to -{{2}^{+}}}\dfrac{\left| x+2 \right|}{x+2}=\displaystyle \lim_{x \to -{{2}^{+}}}1 \\
& \Rightarrow \displaystyle \lim_{x \to -{{2}^{+}}}\dfrac{\left| x+2 \right|}{x+2}=1 \\
\end{align}$
Here we have $\displaystyle \lim_{x \to -{{2}^{+}}}\dfrac{\left| x+2 \right|}{x+2}\ne \displaystyle \lim_{x \to -{{2}^{-}}}\dfrac{\left| x+2 \right|}{x+2}$. So, the limit of the function doesn’t exist.
Note: We can clearly observe that the function is simply $y=1$ for $x>-2$ and $y=-1$ for $x<-2$. So, we can’t calculate the limit of the function. We can also observe this in the graph of the given equation which is shown in below figure
x,\text{ if }x\ge 0 \\
-x,\text{ if }x<0 \\
\end{matrix} \right.$. We will this function definition to define the function $\left| x+2 \right|$. After defining the function, we will calculate the right-hand limit and left-hand limit and then we will conclude the problem by comparing both the values.
Complete step-by-step solution:
Given function, $\dfrac{\left| x+2 \right|}{x+2}$.
We know that the value of the function $\left| x \right|$ is
$\left| x \right|=\left\{ \begin{matrix}
x,\text{ if }x\ge 0 \\
-x,\text{ if }x<0 \\
\end{matrix} \right.$
From the above definition, the value of the function $\left| x+2 \right|$ will be
$\left| x+2 \right|=\left\{ \begin{matrix}
x+2,\text{ if }x\ge -2 \\
-\left( x+2 \right),\text{ if }x<-2 \\
\end{matrix} \right.$
Given that $x$ approaches $-2$.
Calculating the left-hand side limit or limit from the left-hand side.
Left hand side limit means the value of $x$ is less than $-2$ i.e., $x<-2$.
If $x<-2$ the value of the function $\left| x+2 \right|$ is
$\left| x+2 \right|=-\left( x+2 \right)$
From the above value the value of the given function $\dfrac{\left| x+2 \right|}{x+2}$ will be
$\begin{align}
& \dfrac{\left| x+2 \right|}{x+2}=\dfrac{-\left( x+2 \right)}{x+2} \\
& \Rightarrow \dfrac{\left| x+2 \right|}{x+2}=-1 \\
\end{align}$
Applying the left-hand limit to the given function, then we will get
$\begin{align}
& \displaystyle \lim_{x \to -{{2}^{-}}}\dfrac{\left| x+2 \right|}{x+2}=\displaystyle \lim_{x \to -{{2}^{-}}}-1 \\
& \Rightarrow \displaystyle \lim_{x \to -{{2}^{-}}}\dfrac{\left| x+2 \right|}{x+2}=-1 \\
\end{align}$
Calculating the right-hand limit or limit from the right hand side.
Right hand side limit means $x>-2$.
If $x>-2$ the value of the function $\left| x+2 \right|$ is
$\left| x+2 \right|=x+2$
From the above value the value of the given function $\dfrac{\left| x+2 \right|}{x+2}$ will be
$\begin{align}
& \dfrac{\left| x+2 \right|}{x+2}=\dfrac{x+2}{x+2} \\
& \Rightarrow \dfrac{\left| x+2 \right|}{x+2}=1 \\
\end{align}$
Applying the right-hand limit to the given function, then we will get
$\begin{align}
& \displaystyle \lim_{x \to -{{2}^{+}}}\dfrac{\left| x+2 \right|}{x+2}=\displaystyle \lim_{x \to -{{2}^{+}}}1 \\
& \Rightarrow \displaystyle \lim_{x \to -{{2}^{+}}}\dfrac{\left| x+2 \right|}{x+2}=1 \\
\end{align}$
Here we have $\displaystyle \lim_{x \to -{{2}^{+}}}\dfrac{\left| x+2 \right|}{x+2}\ne \displaystyle \lim_{x \to -{{2}^{-}}}\dfrac{\left| x+2 \right|}{x+2}$. So, the limit of the function doesn’t exist.
Note: We can clearly observe that the function is simply $y=1$ for $x>-2$ and $y=-1$ for $x<-2$. So, we can’t calculate the limit of the function. We can also observe this in the graph of the given equation which is shown in below figure
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

