
How do you find the limit of $\dfrac{\left| x+2 \right|}{x+2}$ as $x$ approaches $-2$?
Answer
557.7k+ views
Hint: In this problem we need to calculate the limit value of the given function at given $x$ value. For this we will first check whether the given function exists at the limit value or not at a given $x$ value. So, we will first calculate the limit from the left at given $x$ value and the limit from the right at given $x$ value. For this we will write first define the given function by using the known function definition $\left| x \right|=\left\{ \begin{matrix}
x,\text{ if }x\ge 0 \\
-x,\text{ if }x<0 \\
\end{matrix} \right.$. We will this function definition to define the function $\left| x+2 \right|$. After defining the function, we will calculate the right-hand limit and left-hand limit and then we will conclude the problem by comparing both the values.
Complete step-by-step solution:
Given function, $\dfrac{\left| x+2 \right|}{x+2}$.
We know that the value of the function $\left| x \right|$ is
$\left| x \right|=\left\{ \begin{matrix}
x,\text{ if }x\ge 0 \\
-x,\text{ if }x<0 \\
\end{matrix} \right.$
From the above definition, the value of the function $\left| x+2 \right|$ will be
$\left| x+2 \right|=\left\{ \begin{matrix}
x+2,\text{ if }x\ge -2 \\
-\left( x+2 \right),\text{ if }x<-2 \\
\end{matrix} \right.$
Given that $x$ approaches $-2$.
Calculating the left-hand side limit or limit from the left-hand side.
Left hand side limit means the value of $x$ is less than $-2$ i.e., $x<-2$.
If $x<-2$ the value of the function $\left| x+2 \right|$ is
$\left| x+2 \right|=-\left( x+2 \right)$
From the above value the value of the given function $\dfrac{\left| x+2 \right|}{x+2}$ will be
$\begin{align}
& \dfrac{\left| x+2 \right|}{x+2}=\dfrac{-\left( x+2 \right)}{x+2} \\
& \Rightarrow \dfrac{\left| x+2 \right|}{x+2}=-1 \\
\end{align}$
Applying the left-hand limit to the given function, then we will get
$\begin{align}
& \displaystyle \lim_{x \to -{{2}^{-}}}\dfrac{\left| x+2 \right|}{x+2}=\displaystyle \lim_{x \to -{{2}^{-}}}-1 \\
& \Rightarrow \displaystyle \lim_{x \to -{{2}^{-}}}\dfrac{\left| x+2 \right|}{x+2}=-1 \\
\end{align}$
Calculating the right-hand limit or limit from the right hand side.
Right hand side limit means $x>-2$.
If $x>-2$ the value of the function $\left| x+2 \right|$ is
$\left| x+2 \right|=x+2$
From the above value the value of the given function $\dfrac{\left| x+2 \right|}{x+2}$ will be
$\begin{align}
& \dfrac{\left| x+2 \right|}{x+2}=\dfrac{x+2}{x+2} \\
& \Rightarrow \dfrac{\left| x+2 \right|}{x+2}=1 \\
\end{align}$
Applying the right-hand limit to the given function, then we will get
$\begin{align}
& \displaystyle \lim_{x \to -{{2}^{+}}}\dfrac{\left| x+2 \right|}{x+2}=\displaystyle \lim_{x \to -{{2}^{+}}}1 \\
& \Rightarrow \displaystyle \lim_{x \to -{{2}^{+}}}\dfrac{\left| x+2 \right|}{x+2}=1 \\
\end{align}$
Here we have $\displaystyle \lim_{x \to -{{2}^{+}}}\dfrac{\left| x+2 \right|}{x+2}\ne \displaystyle \lim_{x \to -{{2}^{-}}}\dfrac{\left| x+2 \right|}{x+2}$. So, the limit of the function doesn’t exist.
Note: We can clearly observe that the function is simply $y=1$ for $x>-2$ and $y=-1$ for $x<-2$. So, we can’t calculate the limit of the function. We can also observe this in the graph of the given equation which is shown in below figure
x,\text{ if }x\ge 0 \\
-x,\text{ if }x<0 \\
\end{matrix} \right.$. We will this function definition to define the function $\left| x+2 \right|$. After defining the function, we will calculate the right-hand limit and left-hand limit and then we will conclude the problem by comparing both the values.
Complete step-by-step solution:
Given function, $\dfrac{\left| x+2 \right|}{x+2}$.
We know that the value of the function $\left| x \right|$ is
$\left| x \right|=\left\{ \begin{matrix}
x,\text{ if }x\ge 0 \\
-x,\text{ if }x<0 \\
\end{matrix} \right.$
From the above definition, the value of the function $\left| x+2 \right|$ will be
$\left| x+2 \right|=\left\{ \begin{matrix}
x+2,\text{ if }x\ge -2 \\
-\left( x+2 \right),\text{ if }x<-2 \\
\end{matrix} \right.$
Given that $x$ approaches $-2$.
Calculating the left-hand side limit or limit from the left-hand side.
Left hand side limit means the value of $x$ is less than $-2$ i.e., $x<-2$.
If $x<-2$ the value of the function $\left| x+2 \right|$ is
$\left| x+2 \right|=-\left( x+2 \right)$
From the above value the value of the given function $\dfrac{\left| x+2 \right|}{x+2}$ will be
$\begin{align}
& \dfrac{\left| x+2 \right|}{x+2}=\dfrac{-\left( x+2 \right)}{x+2} \\
& \Rightarrow \dfrac{\left| x+2 \right|}{x+2}=-1 \\
\end{align}$
Applying the left-hand limit to the given function, then we will get
$\begin{align}
& \displaystyle \lim_{x \to -{{2}^{-}}}\dfrac{\left| x+2 \right|}{x+2}=\displaystyle \lim_{x \to -{{2}^{-}}}-1 \\
& \Rightarrow \displaystyle \lim_{x \to -{{2}^{-}}}\dfrac{\left| x+2 \right|}{x+2}=-1 \\
\end{align}$
Calculating the right-hand limit or limit from the right hand side.
Right hand side limit means $x>-2$.
If $x>-2$ the value of the function $\left| x+2 \right|$ is
$\left| x+2 \right|=x+2$
From the above value the value of the given function $\dfrac{\left| x+2 \right|}{x+2}$ will be
$\begin{align}
& \dfrac{\left| x+2 \right|}{x+2}=\dfrac{x+2}{x+2} \\
& \Rightarrow \dfrac{\left| x+2 \right|}{x+2}=1 \\
\end{align}$
Applying the right-hand limit to the given function, then we will get
$\begin{align}
& \displaystyle \lim_{x \to -{{2}^{+}}}\dfrac{\left| x+2 \right|}{x+2}=\displaystyle \lim_{x \to -{{2}^{+}}}1 \\
& \Rightarrow \displaystyle \lim_{x \to -{{2}^{+}}}\dfrac{\left| x+2 \right|}{x+2}=1 \\
\end{align}$
Here we have $\displaystyle \lim_{x \to -{{2}^{+}}}\dfrac{\left| x+2 \right|}{x+2}\ne \displaystyle \lim_{x \to -{{2}^{-}}}\dfrac{\left| x+2 \right|}{x+2}$. So, the limit of the function doesn’t exist.
Note: We can clearly observe that the function is simply $y=1$ for $x>-2$ and $y=-1$ for $x<-2$. So, we can’t calculate the limit of the function. We can also observe this in the graph of the given equation which is shown in below figure
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

