
How do you find the limit of $ \dfrac{{{{\left( {\ln x} \right)}^2}}}{x} $ as $ x $ approaches infinity?
Answer
525.6k+ views
Hint: L’Hospital’s rule provides a technique to evaluate limits of indeterminate form. If in a given limit $ \mathop {\lim }\limits_{x \to c} \dfrac{{f(x)}}{{g(x)}} $ , substituting $ x $ with $ c $ in the function $ \dfrac{{f(x)}}{{g(x)}} $ gives an indeterminate form like $ \dfrac{0}{0} $ or $ \dfrac{\infty }{\infty } $ , we apply L'Hopital's rule. According to this rule, we have to substitute both the functions in the numerator and denominator with their respective derivatives.
i.e., $ \mathop {\lim }\limits_{x \to c} \dfrac{{f(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to c} \dfrac{{f'(x)}}{{g'(x)}} $
And then, we again substitute $ x $ with $ c $ in the function $ \dfrac{{f'(x)}}{{g'(x)}} $ to check the value. If the value is a definite number, we have obtained the answer. But if it again yields an indeterminate form, we continue to apply the rule by substituting both the functions in the numerator and denominator with their respective derivatives till we obtain a definite value.
So check whether L’Hospital’s rule is applicable or not. If yes, try to apply and get the answer.
Complete step-by-step answer:
(i)
We are given,
$ \mathop {\lim }\limits_{x \to \infty } \dfrac{{{{\left( {\ln x} \right)}^2}}}{x} $
When we substitute $ x $ as $ \infty $ in $ \dfrac{{{{\left( {\ln x} \right)}^2}}}{x} $ , we obtain:
$ \dfrac{{{{\left( {\ln \infty } \right)}^2}}}{\infty } $
Since, $ \ln \infty = \infty $ , we get:
$ \dfrac{{{{\left( \infty \right)}^2}}}{\infty } = \dfrac{\infty }{\infty } $ i.e., an indeterminate form.
(ii)
As we know that L’Hospital’s rule helps to evaluate limits of indeterminate form, we will apply it here. So according to L’Hospital’s rule,
$ \mathop {\lim }\limits_{x \to c} \dfrac{{f(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to c} \dfrac{{f'(x)}}{{g'(x)}} $
Here, $ f(x) = {\left( {\ln x} \right)^2} $ and $ g(x) = x $
Since we know that, $ \dfrac{d}{{dx}}\left( {\ln x} \right) = \dfrac{1}{x} $
Therefore, by chain rule,
$ f'(x) = 2 \times \ln x \times \dfrac{1}{x} $
i.e., $ f'(x) = \dfrac{{2\left( {\ln x} \right)}}{x} $
and $ g'(x) = 1 $
(iii)
Now, applying L’Hospital’s rule i.e., substituting the numerator and denominator with their respective derivatives, we get:
$ \mathop {\lim }\limits_{x \to \infty } \dfrac{{{{\left( {\ln x} \right)}^2}}}{x} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2\left( {\ln x} \right)}}{{x \times 1}} $
i.e.,
$ \mathop {\lim }\limits_{x \to \infty } \dfrac{{{{\left( {\ln x} \right)}^2}}}{x} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2\left( {\ln x} \right)}}{x} $
(iv)
Now, we will again check by substituting $ x $ as $ \infty $ in $ \dfrac{{2\left( {\ln x} \right)}}{x} $ . We will get:
$ \dfrac{{2\left( {\ln \infty } \right)}}{\infty } $
Since, $ \ln \infty = \infty $ , we get:
$ \dfrac{{2\left( \infty \right)}}{\infty } = \dfrac{\infty }{\infty } $ i.e., an indeterminate form.
Therefore, we will again apply the L’Hospital’s rule and will replace the numerator and the denominator with their derivatives respectively.
This time we have $ f\left( x \right) = 2\left( {\ln x} \right) $ . Therefore,
$ f'\left( x \right) = 2\left( {\dfrac{1}{x}} \right) $
And since, $ g\left( x \right) = x $ . Therefore,
$ g'\left( x \right) = 1 $
(v)
Now, we have:
$ \mathop {\lim }\limits_{x \to \infty } \dfrac{{2\left( {\ln x} \right)}}{x} = \mathop {\lim }\limits_{x \to \infty } \dfrac{2}{x} $
Putting $ x = \infty $ in $ \dfrac{2}{x} $ gives $ 0 $ which is a definite value.
Therefore, $ \mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{2}{x}} \right) = 0 $
And hence, $ \mathop {\lim }\limits_{x \to \infty } \dfrac{{{{\left( {\ln x} \right)}^2}}}{x} = 0 $
Note: Note that the graph of $ \ln x $ approaches infinity when $ x $ is infinity i.e., $ \ln \infty = \infty $ . We have to repeat the L’Hospital’s rule till we get a definite value instead of an indeterminate form. Here, we got $ \dfrac{1}{\infty } $ which we know is $ 0 $ and not an indeterminate form. So, it will be our final answer. Do not confuse $ 0 $ by $ \dfrac{0}{0} $ form as $ 0 $ is a definite value and $ \dfrac{0}{0} $ is an indeterminate form.
i.e., $ \mathop {\lim }\limits_{x \to c} \dfrac{{f(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to c} \dfrac{{f'(x)}}{{g'(x)}} $
And then, we again substitute $ x $ with $ c $ in the function $ \dfrac{{f'(x)}}{{g'(x)}} $ to check the value. If the value is a definite number, we have obtained the answer. But if it again yields an indeterminate form, we continue to apply the rule by substituting both the functions in the numerator and denominator with their respective derivatives till we obtain a definite value.
So check whether L’Hospital’s rule is applicable or not. If yes, try to apply and get the answer.
Complete step-by-step answer:
(i)
We are given,
$ \mathop {\lim }\limits_{x \to \infty } \dfrac{{{{\left( {\ln x} \right)}^2}}}{x} $
When we substitute $ x $ as $ \infty $ in $ \dfrac{{{{\left( {\ln x} \right)}^2}}}{x} $ , we obtain:
$ \dfrac{{{{\left( {\ln \infty } \right)}^2}}}{\infty } $
Since, $ \ln \infty = \infty $ , we get:
$ \dfrac{{{{\left( \infty \right)}^2}}}{\infty } = \dfrac{\infty }{\infty } $ i.e., an indeterminate form.
(ii)
As we know that L’Hospital’s rule helps to evaluate limits of indeterminate form, we will apply it here. So according to L’Hospital’s rule,
$ \mathop {\lim }\limits_{x \to c} \dfrac{{f(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to c} \dfrac{{f'(x)}}{{g'(x)}} $
Here, $ f(x) = {\left( {\ln x} \right)^2} $ and $ g(x) = x $
Since we know that, $ \dfrac{d}{{dx}}\left( {\ln x} \right) = \dfrac{1}{x} $
Therefore, by chain rule,
$ f'(x) = 2 \times \ln x \times \dfrac{1}{x} $
i.e., $ f'(x) = \dfrac{{2\left( {\ln x} \right)}}{x} $
and $ g'(x) = 1 $
(iii)
Now, applying L’Hospital’s rule i.e., substituting the numerator and denominator with their respective derivatives, we get:
$ \mathop {\lim }\limits_{x \to \infty } \dfrac{{{{\left( {\ln x} \right)}^2}}}{x} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2\left( {\ln x} \right)}}{{x \times 1}} $
i.e.,
$ \mathop {\lim }\limits_{x \to \infty } \dfrac{{{{\left( {\ln x} \right)}^2}}}{x} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2\left( {\ln x} \right)}}{x} $
(iv)
Now, we will again check by substituting $ x $ as $ \infty $ in $ \dfrac{{2\left( {\ln x} \right)}}{x} $ . We will get:
$ \dfrac{{2\left( {\ln \infty } \right)}}{\infty } $
Since, $ \ln \infty = \infty $ , we get:
$ \dfrac{{2\left( \infty \right)}}{\infty } = \dfrac{\infty }{\infty } $ i.e., an indeterminate form.
Therefore, we will again apply the L’Hospital’s rule and will replace the numerator and the denominator with their derivatives respectively.
This time we have $ f\left( x \right) = 2\left( {\ln x} \right) $ . Therefore,
$ f'\left( x \right) = 2\left( {\dfrac{1}{x}} \right) $
And since, $ g\left( x \right) = x $ . Therefore,
$ g'\left( x \right) = 1 $
(v)
Now, we have:
$ \mathop {\lim }\limits_{x \to \infty } \dfrac{{2\left( {\ln x} \right)}}{x} = \mathop {\lim }\limits_{x \to \infty } \dfrac{2}{x} $
Putting $ x = \infty $ in $ \dfrac{2}{x} $ gives $ 0 $ which is a definite value.
Therefore, $ \mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{2}{x}} \right) = 0 $
And hence, $ \mathop {\lim }\limits_{x \to \infty } \dfrac{{{{\left( {\ln x} \right)}^2}}}{x} = 0 $
Note: Note that the graph of $ \ln x $ approaches infinity when $ x $ is infinity i.e., $ \ln \infty = \infty $ . We have to repeat the L’Hospital’s rule till we get a definite value instead of an indeterminate form. Here, we got $ \dfrac{1}{\infty } $ which we know is $ 0 $ and not an indeterminate form. So, it will be our final answer. Do not confuse $ 0 $ by $ \dfrac{0}{0} $ form as $ 0 $ is a definite value and $ \dfrac{0}{0} $ is an indeterminate form.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

