
How do you find the limit of \[\dfrac{\dfrac{1}{y}-\dfrac{1}{7}}{y-7}\] as y approaches 7?
Answer
544.5k+ views
Hint: In the given question, we have asked to simplify an expression and the limit of that expression is given. In order to solve the question, first we need to simplify the numerator and denominator one by one of the given expressions. Later after simplifying we will cancel out the common factor. Then we put y = 7 in the simplified expression. In this way we will get the answer to this question.
Complete step by step solution:
We have given that,
\[\Rightarrow \dfrac{\left( \dfrac{1}{y}-\dfrac{1}{7} \right)}{y-7}\]
Simplifying the numerator;
We have the numerator as follows,
\[\left( \dfrac{1}{y}-\dfrac{1}{7} \right)\]
Taking the LCM of the above equation, we get
\[\left( \dfrac{7-y}{7y} \right)\]
Now,
Combining the numerator and denominator,
We have,
\[\Rightarrow \dfrac{\left( \dfrac{1}{y}-\dfrac{1}{7} \right)}{y-7}=\dfrac{\left( \dfrac{7-y}{7y} \right)}{y-7}=\dfrac{7-y}{7y}\times \dfrac{1}{y-7}\]
Rewrite the simplified expression as, we get
\[\Rightarrow \dfrac{7-y}{7y}\times \dfrac{1}{y-7}=\dfrac{-1\left( y-7 \right)}{7y}\times \dfrac{1}{y-7}\]
Cancelling out the common factor of the above expression, we get
\[\Rightarrow -\dfrac{1}{7y}\]
Now, putting the limit;
\[\underset{y\to 7}{\mathop{\lim }}\,\dfrac{\left( \dfrac{1}{y}-\dfrac{1}{7} \right)}{y-7}=\underset{y\to 7}{\mathop{\lim }}\,-\dfrac{1}{7y}\]
Putting the value of y equals to 7 in the above expression, we get
\[\underset{y\to 7}{\mathop{\lim }}\,\dfrac{\left( \dfrac{1}{y}-\dfrac{1}{7} \right)}{y-7}=\underset{y\to 7}{\mathop{\lim }}\,-\dfrac{1}{7y}=-\dfrac{1}{7\times 7}\]
Solving the numbers in the above expression, we get
\[\underset{y\to 7}{\mathop{\lim }}\,\dfrac{\left( \dfrac{1}{y}-\dfrac{1}{7} \right)}{y-7}=\underset{y\to 7}{\mathop{\lim }}\,-\dfrac{1}{7y}=-\dfrac{1}{7\times 7}=-\dfrac{1}{49}\]
Therefore, \[\underset{y\to 7}{\mathop{\lim }}\,\dfrac{\left( \dfrac{1}{y}-\dfrac{1}{7} \right)}{y-7}=-\dfrac{1}{49}\] Hence, this is the required answer.
Note: While solving these types of problems, students need to be very careful while doing the calculation part to avoid making any type of error. They need to know about the concept of the simplification of the quadratic equation. Instead of factorizing the polynomial we can solve this question by derivate the numerator and denominator with respect to ‘y’ and then put the given value of ‘y’, this is known as l’hospital rule. Both the ways we will get the same answer.
Complete step by step solution:
We have given that,
\[\Rightarrow \dfrac{\left( \dfrac{1}{y}-\dfrac{1}{7} \right)}{y-7}\]
Simplifying the numerator;
We have the numerator as follows,
\[\left( \dfrac{1}{y}-\dfrac{1}{7} \right)\]
Taking the LCM of the above equation, we get
\[\left( \dfrac{7-y}{7y} \right)\]
Now,
Combining the numerator and denominator,
We have,
\[\Rightarrow \dfrac{\left( \dfrac{1}{y}-\dfrac{1}{7} \right)}{y-7}=\dfrac{\left( \dfrac{7-y}{7y} \right)}{y-7}=\dfrac{7-y}{7y}\times \dfrac{1}{y-7}\]
Rewrite the simplified expression as, we get
\[\Rightarrow \dfrac{7-y}{7y}\times \dfrac{1}{y-7}=\dfrac{-1\left( y-7 \right)}{7y}\times \dfrac{1}{y-7}\]
Cancelling out the common factor of the above expression, we get
\[\Rightarrow -\dfrac{1}{7y}\]
Now, putting the limit;
\[\underset{y\to 7}{\mathop{\lim }}\,\dfrac{\left( \dfrac{1}{y}-\dfrac{1}{7} \right)}{y-7}=\underset{y\to 7}{\mathop{\lim }}\,-\dfrac{1}{7y}\]
Putting the value of y equals to 7 in the above expression, we get
\[\underset{y\to 7}{\mathop{\lim }}\,\dfrac{\left( \dfrac{1}{y}-\dfrac{1}{7} \right)}{y-7}=\underset{y\to 7}{\mathop{\lim }}\,-\dfrac{1}{7y}=-\dfrac{1}{7\times 7}\]
Solving the numbers in the above expression, we get
\[\underset{y\to 7}{\mathop{\lim }}\,\dfrac{\left( \dfrac{1}{y}-\dfrac{1}{7} \right)}{y-7}=\underset{y\to 7}{\mathop{\lim }}\,-\dfrac{1}{7y}=-\dfrac{1}{7\times 7}=-\dfrac{1}{49}\]
Therefore, \[\underset{y\to 7}{\mathop{\lim }}\,\dfrac{\left( \dfrac{1}{y}-\dfrac{1}{7} \right)}{y-7}=-\dfrac{1}{49}\] Hence, this is the required answer.
Note: While solving these types of problems, students need to be very careful while doing the calculation part to avoid making any type of error. They need to know about the concept of the simplification of the quadratic equation. Instead of factorizing the polynomial we can solve this question by derivate the numerator and denominator with respect to ‘y’ and then put the given value of ‘y’, this is known as l’hospital rule. Both the ways we will get the same answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

