
Find the limit: $\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-{{e}^{-x}}-2\ln \left( 1+x \right)}{x\sin x}$.
Answer
574.5k+ views
Hint: Using different limit formulas we first try to break the given limit into a sum of three limits. We apply the limit theorems to find their values in number. We try to break the limit and keep the part of $\displaystyle \lim_{x \to 0}\dfrac{1}{\sin x}$ separate. The other part gives us a value of 0 and in multiplication the total value of the limit becomes 0.
Complete step-by-step answer:
To find the limit value of the given limits we are going to use some limit forms.
We know that $\displaystyle \lim_{x \to a}\left[ f\left( x \right)\pm g\left( x \right) \right]=\displaystyle \lim_{x \to a}f\left( x \right)\pm \displaystyle \lim_{x \to a}g\left( x \right)$.
Also, we have $\displaystyle \lim_{x \to a}\left[ f\left( x \right).g\left( x \right) \right]=\displaystyle \lim_{x \to a}f\left( x \right)\times \displaystyle \lim_{x \to a}g\left( x \right)$ and \[\displaystyle \lim_{x \to a}\left[ \dfrac{f\left( x \right)}{g\left( x \right)} \right]=\dfrac{\displaystyle \lim_{x \to a}f\left( x \right)}{\displaystyle \lim_{x \to a}g\left( x \right)}\].
We first try to keep only x in the denominator.
So, $\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-{{e}^{-x}}-2\ln \left( 1+x \right)}{x\sin x}=\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-{{e}^{-x}}-2\ln \left( 1+x \right)}{x}\times \displaystyle \lim_{x \to 0}\dfrac{1}{\sin x}$
Let’s assume $\displaystyle \lim_{x \to 0}\dfrac{1}{\sin x}=a$ and try to solve the rest of the limit.
We have been given a number of functions and we are going to break them.
$\begin{align}
& \displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-{{e}^{-x}}-2\ln \left( 1+x \right)}{x} \\
& =\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-1+1-{{e}^{-x}}-2\ln \left( 1+x \right)}{x} \\
& =\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-1}{x}+\displaystyle \lim_{x \to 0}\dfrac{1-{{e}^{-x}}}{x}-\displaystyle \lim_{x \to 0}\dfrac{2\ln \left( 1+x \right)}{x} \\
& =\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-1}{x}-\displaystyle \lim_{x \to 0}\dfrac{{{e}^{-x}}-1}{x}-\displaystyle \lim_{x \to 0}\dfrac{2\ln \left( 1+x \right)}{x} \\
\end{align}$
We know $\displaystyle \lim_{x \to 0}\dfrac{\ln \left( 1+x \right)}{x}=1,\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-1}{x}=1$.
For the second limit in the expansion, for $\displaystyle \lim_{x \to 0}\dfrac{{{e}^{-x}}-1}{x}$ we will change the variable to keep it true to the property.
Let’s assume $z=-x$. Now if $x \to 0\Rightarrow z\to 0$.
So, $\displaystyle \lim_{x \to 0}\dfrac{{{e}^{-x}}-1}{x}=\displaystyle \lim_{z\to 0}\dfrac{{{e}^{z}}-1}{-z}$
So, putting the values we get
\[\begin{align}
& \displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-1}{x}-\displaystyle \lim_{z\to 0}\dfrac{{{e}^{z}}-1}{-z}-\displaystyle \lim_{x \to 0}\dfrac{2\ln \left( 1+x \right)}{x} \\
& =1+\displaystyle \lim_{z\to 0}\dfrac{{{e}^{z}}-1}{z}-2\displaystyle \lim_{x \to 0}\dfrac{\ln \left( 1+x \right)}{x} \\
& =1+1-2\times 1 \\
& =0 \\
\end{align}\]
Now we don’t need to find the value of $\displaystyle \lim_{x \to 0}\dfrac{1}{\sin x}=a$ as in the multiplication of $\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-{{e}^{-x}}-2\ln \left( 1+x \right)}{x}\times \displaystyle \lim_{x \to 0}\dfrac{1}{\sin x}$. The left part value is 0. So, whatever be the answer of $\displaystyle \lim_{x \to 0}\dfrac{1}{\sin x}=a$ be the final answer will always remain 0.
So, $\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-{{e}^{-x}}-2\ln \left( 1+x \right)}{x\sin x}=\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-{{e}^{-x}}-2\ln \left( 1+x \right)}{x}\times \displaystyle \lim_{x \to 0}\dfrac{1}{\sin x}=0$.
The limit value of $\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-{{e}^{-x}}-2\ln \left( 1+x \right)}{x\sin x}$ is 0.
Note: We need to remember to first do the limit in rough just to understand which parts are directly solvable to find the answers. We try to form the whole limit in that order. We have tools to make them in multiplication form or summation form. $\displaystyle \lim_{x \to 0}\dfrac{1}{\sin x}$ have break in the curve at point $x=0$.
Complete step-by-step answer:
To find the limit value of the given limits we are going to use some limit forms.
We know that $\displaystyle \lim_{x \to a}\left[ f\left( x \right)\pm g\left( x \right) \right]=\displaystyle \lim_{x \to a}f\left( x \right)\pm \displaystyle \lim_{x \to a}g\left( x \right)$.
Also, we have $\displaystyle \lim_{x \to a}\left[ f\left( x \right).g\left( x \right) \right]=\displaystyle \lim_{x \to a}f\left( x \right)\times \displaystyle \lim_{x \to a}g\left( x \right)$ and \[\displaystyle \lim_{x \to a}\left[ \dfrac{f\left( x \right)}{g\left( x \right)} \right]=\dfrac{\displaystyle \lim_{x \to a}f\left( x \right)}{\displaystyle \lim_{x \to a}g\left( x \right)}\].
We first try to keep only x in the denominator.
So, $\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-{{e}^{-x}}-2\ln \left( 1+x \right)}{x\sin x}=\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-{{e}^{-x}}-2\ln \left( 1+x \right)}{x}\times \displaystyle \lim_{x \to 0}\dfrac{1}{\sin x}$
Let’s assume $\displaystyle \lim_{x \to 0}\dfrac{1}{\sin x}=a$ and try to solve the rest of the limit.
We have been given a number of functions and we are going to break them.
$\begin{align}
& \displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-{{e}^{-x}}-2\ln \left( 1+x \right)}{x} \\
& =\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-1+1-{{e}^{-x}}-2\ln \left( 1+x \right)}{x} \\
& =\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-1}{x}+\displaystyle \lim_{x \to 0}\dfrac{1-{{e}^{-x}}}{x}-\displaystyle \lim_{x \to 0}\dfrac{2\ln \left( 1+x \right)}{x} \\
& =\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-1}{x}-\displaystyle \lim_{x \to 0}\dfrac{{{e}^{-x}}-1}{x}-\displaystyle \lim_{x \to 0}\dfrac{2\ln \left( 1+x \right)}{x} \\
\end{align}$
We know $\displaystyle \lim_{x \to 0}\dfrac{\ln \left( 1+x \right)}{x}=1,\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-1}{x}=1$.
For the second limit in the expansion, for $\displaystyle \lim_{x \to 0}\dfrac{{{e}^{-x}}-1}{x}$ we will change the variable to keep it true to the property.
Let’s assume $z=-x$. Now if $x \to 0\Rightarrow z\to 0$.
So, $\displaystyle \lim_{x \to 0}\dfrac{{{e}^{-x}}-1}{x}=\displaystyle \lim_{z\to 0}\dfrac{{{e}^{z}}-1}{-z}$
So, putting the values we get
\[\begin{align}
& \displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-1}{x}-\displaystyle \lim_{z\to 0}\dfrac{{{e}^{z}}-1}{-z}-\displaystyle \lim_{x \to 0}\dfrac{2\ln \left( 1+x \right)}{x} \\
& =1+\displaystyle \lim_{z\to 0}\dfrac{{{e}^{z}}-1}{z}-2\displaystyle \lim_{x \to 0}\dfrac{\ln \left( 1+x \right)}{x} \\
& =1+1-2\times 1 \\
& =0 \\
\end{align}\]
Now we don’t need to find the value of $\displaystyle \lim_{x \to 0}\dfrac{1}{\sin x}=a$ as in the multiplication of $\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-{{e}^{-x}}-2\ln \left( 1+x \right)}{x}\times \displaystyle \lim_{x \to 0}\dfrac{1}{\sin x}$. The left part value is 0. So, whatever be the answer of $\displaystyle \lim_{x \to 0}\dfrac{1}{\sin x}=a$ be the final answer will always remain 0.
So, $\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-{{e}^{-x}}-2\ln \left( 1+x \right)}{x\sin x}=\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-{{e}^{-x}}-2\ln \left( 1+x \right)}{x}\times \displaystyle \lim_{x \to 0}\dfrac{1}{\sin x}=0$.
The limit value of $\displaystyle \lim_{x \to 0}\dfrac{{{e}^{x}}-{{e}^{-x}}-2\ln \left( 1+x \right)}{x\sin x}$ is 0.
Note: We need to remember to first do the limit in rough just to understand which parts are directly solvable to find the answers. We try to form the whole limit in that order. We have tools to make them in multiplication form or summation form. $\displaystyle \lim_{x \to 0}\dfrac{1}{\sin x}$ have break in the curve at point $x=0$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

