
Find the length of the transverse common tangent.
(a) \[5\sqrt{2}\]
(b) 7
(c) \[\sqrt{55}\]
(d) \[\sqrt{51}\]
Answer
605.7k+ views
Hint: Transverse common tangent (TCT) meets on the line passing through the centre. Find the distance between the centre of the circle and mark it as ‘ \[\lambda \] ‘. Thus substitute the value of \[\lambda \] and the radius of both circles to the equation of length of TCT.
Complete step-by-step answer:
A common tangent is a line that is tangent to two circles. Now a transverse common tangent meets on the line passing through the centre and divides it internally in the ratio of radii as shown in figure.
So, let us mark D as the point where the common tangent meets the line passing the centre of the circle.
We have been given the two circles as \[{{C}_{1}}\] and \[{{C}_{2}}\] . The radius of both the circles can be marked as \[{{r}_{1}}\] and \[{{r}_{2}}\] . Let us mark ‘d’ as the distance between the centre of the circles.
The length of a transverse common tangent to two circles is given by the formula,
Length of a transverse common tangent \[=\sqrt{{{d}^{2}}-{{\left( {{r}_{1}}+{{r}_{2}} \right)}^{2}}}\] ……………………(i)
Here, we know ‘d’ as the distance between centres. Hence, from the figure
\[\lambda =4+3+3=10cm\]
d=10cm
Now let us apply all the values in (i)
Length of a transverse common tangent \[=\sqrt{{{\left( 10 \right)}^{2}}-{{\left( 4+3 \right)}^{2}}}\]
\[=\sqrt{100-{{\left( 7 \right)}^{2}}}=\sqrt{100-49}=\sqrt{51}\]
Hence, we got the length of the transverse common tangent as \[\sqrt{51}\] .
\[\therefore \] option (d) is correct.
Note: In the circle \[{{C}_{2}}\] , we might by mistake take 3cm as the diameter of the circle, whereas 3cm is the radius of the circle. The portion of tangent is important, so try to learn the formula.
Complete step-by-step answer:
A common tangent is a line that is tangent to two circles. Now a transverse common tangent meets on the line passing through the centre and divides it internally in the ratio of radii as shown in figure.
So, let us mark D as the point where the common tangent meets the line passing the centre of the circle.
We have been given the two circles as \[{{C}_{1}}\] and \[{{C}_{2}}\] . The radius of both the circles can be marked as \[{{r}_{1}}\] and \[{{r}_{2}}\] . Let us mark ‘d’ as the distance between the centre of the circles.
The length of a transverse common tangent to two circles is given by the formula,
Length of a transverse common tangent \[=\sqrt{{{d}^{2}}-{{\left( {{r}_{1}}+{{r}_{2}} \right)}^{2}}}\] ……………………(i)
Here, we know ‘d’ as the distance between centres. Hence, from the figure
\[\lambda =4+3+3=10cm\]
d=10cm
Now let us apply all the values in (i)
Length of a transverse common tangent \[=\sqrt{{{\left( 10 \right)}^{2}}-{{\left( 4+3 \right)}^{2}}}\]
\[=\sqrt{100-{{\left( 7 \right)}^{2}}}=\sqrt{100-49}=\sqrt{51}\]
Hence, we got the length of the transverse common tangent as \[\sqrt{51}\] .
\[\therefore \] option (d) is correct.
Note: In the circle \[{{C}_{2}}\] , we might by mistake take 3cm as the diameter of the circle, whereas 3cm is the radius of the circle. The portion of tangent is important, so try to learn the formula.
Recently Updated Pages
Questions & Answers - Ask your doubts

Master Class 9 Social Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
The average rainfall in India is A 105cm B 90cm C 120cm class 10 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

