
Find the length of the latus rectum of the parabola whose parametric equation are given by \[x={{t}^{2}}+t+1\text{ and }y={{t}^{2}}-t+1\]
Answer
587.1k+ views
Hint: We will first solve for the value of \[t\] using both the equations. Then put the value of \[t\] in any one equation. We will get the equation of the parabola. We know that the point on the parabola is equidistant from a fixed line and a fixed point. We will write the equation in Focus- Directrix form, given as \[{{\left( \dfrac{x+y+k}{\sqrt{{{1}^{2}}+{{1}^{2}}}} \right)}^{2}}={{\left( x-a \right)}^{2}}+{{\left( x-a \right)}^{2}}\] . We will solve the equation to get the value of variables. We know that the distance between Directrix and focus is ‘2a’ and the line joining focus and directrix is perpendicular to directrix. We will now calculate the distance. We also know that the length of the latus rectum is equal to ‘4a’
Complete step-by-step answer:
We have these two equations
\[\begin{align}
& \Rightarrow x={{t}^{2}}+t+1.....(i) \\
& \Rightarrow y={{t}^{2}}-t+1......(ii) \\
\end{align}\]
Adding EQ.( \[i\]) And Eq.( \[ii\])
\[\begin{align}
& \Rightarrow x+y=2\left( {{t}^{2}}+1 \right) \\
& \Rightarrow x+y-2=2{{t}^{2}}.....(iii) \\
\end{align}\]
We will now subtract equation(ii) from equation (i)
\[\Rightarrow x-y=2t......(iv)\]
We will solve equation (iii) and equation (iv)
\[\begin{align}
& \Rightarrow x+y-2=2\left( \dfrac{{{\left( x-y \right)}^{2}}}{4} \right) \\
& \Rightarrow x+y-2=\dfrac{{{\left( x-y \right)}^{2}}}{2} \\
& \Rightarrow 2(x+y-2)={{\left( x-y \right)}^{2}} \\
& \Rightarrow 2x+2y-4={{x}^{2}}+{{y}^{2}}-2xy \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-2xy-2x-2y+4=0.......(v) \\
& \\
\end{align}\]
The above equation can be written in the focus-directrix form as
\[{{\left( \dfrac{x+y+k}{\sqrt{{{1}^{2}}+{{1}^{2}}}} \right)}^{2}}={{\left( x-a \right)}^{2}}+{{\left( x-a \right)}^{2}}\]
Where \[x+y+k=0\] is the equation of directrix and (a, a) is the focus.
The values of a and k can be found by equating the coefficient of the original equation(v).
Equating the constant term, we get,
\[\begin{align}
& 4{{a}^{2}}-{{k}^{2}}=4......(vi) \\
& \\
& \text{Equating the coefficient of }x\text{, we get,} \\
& \Rightarrow -4a-2k=-2......(vii) \\
& \\
& \text{From }(vi)\text{ and }(vii)\text{ we get }a=\dfrac{5}{4}\text{ and }k=-\dfrac{3}{2} \\
\end{align}\]
So, the equation of directrix is \[x+y-\dfrac{3}{2}=0\]and the coordinates of the focus are \[\left( \dfrac{5}{4},\dfrac{5}{4} \right)\]
We know the perpendicular distance between a line and a point is given by
\[d=\left| \dfrac{A{{x}_{1}}+B{{y}_{1}}+C}{\sqrt{{{A}^{2}}+{{B}^{2}}}} \right|\]
Distance between focus and directrix is 2a
\[\begin{align}
& 2a=\left| \dfrac{A{{x}_{1}}+B{{y}_{1}}+C}{\sqrt{{{A}^{2}}+{{B}^{2}}}} \right| \\
& \\
& \text{where }A=1,\text{ }B=1\text{ and }C=-\dfrac{3}{2} \\
& \text{and }{{x}_{1}}=\dfrac{5}{4}\text{ and }{{y}_{1}}=\dfrac{5}{4} \\
& \Rightarrow 2a\text{=}\left| \dfrac{\dfrac{5}{4}+\dfrac{5}{4}-\dfrac{3}{2}}{\sqrt{{{1}^{2}}+{{1}^{2}}}} \right| \\
& \Rightarrow 2a\text{=}\dfrac{1}{\sqrt{2}} \\
\end{align}\]
We know that the length of the latus rectum is 4a
Length of the latus rectum \[=2\times \dfrac{1}{\sqrt{2}}=\sqrt{2}\]
Note: Alternate Method:
We have these two equations,
\[\begin{align}
& \Rightarrow x={{t}^{2}}+t+1.....(i) \\
& \Rightarrow y={{t}^{2}}-t+1......(ii) \\
\end{align}\]
Subtracting (i) and (ii), we get
\[\Rightarrow t=\dfrac{\left( x-y \right)}{2}\]
Substituting the value of t in (i)
\[\begin{align}
& \Rightarrow x={{\left( \dfrac{x-y}{2} \right)}^{2}}+\left( \dfrac{x-y}{2} \right)+1 \\
& \\
\end{align}\]
Arranging above equation, we get
\[\begin{align}
& \Rightarrow {{\left( x-y \right)}^{2}}=2\left( x+y-2 \right) \\
& \\
\end{align}\]
We can write above equation as
\[\begin{align}
& \Rightarrow {{\left( \dfrac{x-y}{\sqrt{2}} \right)}^{2}}=\left( x+y-2 \right) \\
& \\
\end{align}\]
We will now multiply and divide LHS by \[\sqrt{2}\]
\[\begin{align}
& \Rightarrow {{\left( \dfrac{x-y}{\sqrt{2}} \right)}^{2}}=\sqrt{2}\left( \dfrac{x+y-2}{\sqrt{2}} \right) \\
& \\
\end{align}\]
Equating the above equation with the general form \[{{y}^{2}}=4ax\], we get,
\[\Rightarrow \text{4}a=\sqrt{2}\]
We know that latus rectum of parabola is equal to 4a
\[\therefore \] latus rectum of parabola is \[\sqrt{2}\]
Complete step-by-step answer:
We have these two equations
\[\begin{align}
& \Rightarrow x={{t}^{2}}+t+1.....(i) \\
& \Rightarrow y={{t}^{2}}-t+1......(ii) \\
\end{align}\]
Adding EQ.( \[i\]) And Eq.( \[ii\])
\[\begin{align}
& \Rightarrow x+y=2\left( {{t}^{2}}+1 \right) \\
& \Rightarrow x+y-2=2{{t}^{2}}.....(iii) \\
\end{align}\]
We will now subtract equation(ii) from equation (i)
\[\Rightarrow x-y=2t......(iv)\]
We will solve equation (iii) and equation (iv)
\[\begin{align}
& \Rightarrow x+y-2=2\left( \dfrac{{{\left( x-y \right)}^{2}}}{4} \right) \\
& \Rightarrow x+y-2=\dfrac{{{\left( x-y \right)}^{2}}}{2} \\
& \Rightarrow 2(x+y-2)={{\left( x-y \right)}^{2}} \\
& \Rightarrow 2x+2y-4={{x}^{2}}+{{y}^{2}}-2xy \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-2xy-2x-2y+4=0.......(v) \\
& \\
\end{align}\]
The above equation can be written in the focus-directrix form as
\[{{\left( \dfrac{x+y+k}{\sqrt{{{1}^{2}}+{{1}^{2}}}} \right)}^{2}}={{\left( x-a \right)}^{2}}+{{\left( x-a \right)}^{2}}\]
Where \[x+y+k=0\] is the equation of directrix and (a, a) is the focus.
The values of a and k can be found by equating the coefficient of the original equation(v).
Equating the constant term, we get,
\[\begin{align}
& 4{{a}^{2}}-{{k}^{2}}=4......(vi) \\
& \\
& \text{Equating the coefficient of }x\text{, we get,} \\
& \Rightarrow -4a-2k=-2......(vii) \\
& \\
& \text{From }(vi)\text{ and }(vii)\text{ we get }a=\dfrac{5}{4}\text{ and }k=-\dfrac{3}{2} \\
\end{align}\]
So, the equation of directrix is \[x+y-\dfrac{3}{2}=0\]and the coordinates of the focus are \[\left( \dfrac{5}{4},\dfrac{5}{4} \right)\]
We know the perpendicular distance between a line and a point is given by
\[d=\left| \dfrac{A{{x}_{1}}+B{{y}_{1}}+C}{\sqrt{{{A}^{2}}+{{B}^{2}}}} \right|\]
Distance between focus and directrix is 2a
\[\begin{align}
& 2a=\left| \dfrac{A{{x}_{1}}+B{{y}_{1}}+C}{\sqrt{{{A}^{2}}+{{B}^{2}}}} \right| \\
& \\
& \text{where }A=1,\text{ }B=1\text{ and }C=-\dfrac{3}{2} \\
& \text{and }{{x}_{1}}=\dfrac{5}{4}\text{ and }{{y}_{1}}=\dfrac{5}{4} \\
& \Rightarrow 2a\text{=}\left| \dfrac{\dfrac{5}{4}+\dfrac{5}{4}-\dfrac{3}{2}}{\sqrt{{{1}^{2}}+{{1}^{2}}}} \right| \\
& \Rightarrow 2a\text{=}\dfrac{1}{\sqrt{2}} \\
\end{align}\]
We know that the length of the latus rectum is 4a
Length of the latus rectum \[=2\times \dfrac{1}{\sqrt{2}}=\sqrt{2}\]
Note: Alternate Method:
We have these two equations,
\[\begin{align}
& \Rightarrow x={{t}^{2}}+t+1.....(i) \\
& \Rightarrow y={{t}^{2}}-t+1......(ii) \\
\end{align}\]
Subtracting (i) and (ii), we get
\[\Rightarrow t=\dfrac{\left( x-y \right)}{2}\]
Substituting the value of t in (i)
\[\begin{align}
& \Rightarrow x={{\left( \dfrac{x-y}{2} \right)}^{2}}+\left( \dfrac{x-y}{2} \right)+1 \\
& \\
\end{align}\]
Arranging above equation, we get
\[\begin{align}
& \Rightarrow {{\left( x-y \right)}^{2}}=2\left( x+y-2 \right) \\
& \\
\end{align}\]
We can write above equation as
\[\begin{align}
& \Rightarrow {{\left( \dfrac{x-y}{\sqrt{2}} \right)}^{2}}=\left( x+y-2 \right) \\
& \\
\end{align}\]
We will now multiply and divide LHS by \[\sqrt{2}\]
\[\begin{align}
& \Rightarrow {{\left( \dfrac{x-y}{\sqrt{2}} \right)}^{2}}=\sqrt{2}\left( \dfrac{x+y-2}{\sqrt{2}} \right) \\
& \\
\end{align}\]
Equating the above equation with the general form \[{{y}^{2}}=4ax\], we get,
\[\Rightarrow \text{4}a=\sqrt{2}\]
We know that latus rectum of parabola is equal to 4a
\[\therefore \] latus rectum of parabola is \[\sqrt{2}\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

