
How do you find the length of the curve \[x = 1 + 3{t^2}\], \[y = 4 + 2{t^3}\], where \[0 \leqslant t \leqslant 1\]?
Answer
489.9k+ views
Hint: Length of a curve is given by \[\int\limits_a^b {\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} } dx\]. So, we will find \[\dfrac{{dy}}{{dx}}\] by finding \[\dfrac{{dy}}{{dt}}\] and \[\dfrac{{dx}}{{dt}}\] and then dividing them. Then we will substitute \[dx = 6tdt\]. Then we will put all these values in the formula to find the length of the curve and we will integrate by making proper substitution. Then we will simplify it to find the result.
Complete step by step answer:
We have \[x = 1 + 3{t^2}\] and \[y = 4 + 2{t^3}\].
Differentiating \[x\] with respect to \[t\], we get
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {1 + 3{t^2}} \right)\]
\[ \Rightarrow \dfrac{{dx}}{{dt}} = 6t - - - (1)\]
Differentiating \[y\] with respect to \[t\], we get
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dx}}\left( {4 + 2{t^3}} \right)\]
\[ \Rightarrow \dfrac{{dy}}{{dt}} = 6{t^2} - - - (2)\]
Dividing \[(2)\] and \[(1)\], we get
\[ \Rightarrow \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}} = \dfrac{{6{t^2}}}{{6t}}\]
On simplification, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = t - - - (3)\]
Also, from \[(1)\], we can write
\[ \Rightarrow dx = 6tdt - - - (4)\]
As we know that, \[{\text{Arc Length}} = \int\limits_a^b {\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} } dx - - - (5)\]
Given, \[0 \leqslant t \leqslant 1\]. Putting the values from \[(3)\] and \[(4)\] in \[(5)\], we get
\[ \Rightarrow {\text{Arc Length}} = \int\limits_0^1 {\left( {\sqrt {1 + {{\left( t \right)}^2}} } \right)} \times 6tdt\]
On rewriting, we get
\[ \Rightarrow {\text{Arc Length}} = 3 \times \int\limits_0^1 {2t\left( {\sqrt {1 + {t^2}} } \right)} dt - - - (6)\]
Now, let \[I = \int {2t\left( {\sqrt {1 + {t^2}} } \right)dt} \]
Let \[1 + {t^2} = u\]
Differentiating w.r.t \[t\], we get
\[ \Rightarrow 2t = \dfrac{{du}}{{dt}}\]
\[ \Rightarrow dt = \dfrac{{du}}{{2t}}\]
Therefore, we get
\[I = \int {2t \times \sqrt u \times \dfrac{{du}}{{2t}}} \]
Cancelling the common terms and on rewriting, we get
\[I = \int {{{\left( u \right)}^{\dfrac{1}{2}}}du} \]
On integrating, we get
\[ \Rightarrow I = \int {\dfrac{{{{\left( u \right)}^{\dfrac{1}{2} + 1}}}}{{\left( {\dfrac{1}{2} + 1} \right)}}du} \]
On simplification, we get
\[ \Rightarrow I = \dfrac{2}{3}{\left( u \right)^{\dfrac{3}{2}}}\]
Substituting back \[1 + {t^2} = u\], we get
\[ \Rightarrow I = \dfrac{2}{3}{\left( {1 + {t^2}} \right)^{\dfrac{3}{2}}}\]
So, \[\int\limits_0^1 {2t\left( {\sqrt {1 + {t^2}} } \right)} dt = \left[ {\dfrac{2}{3}{{\left( {1 + {t^2}} \right)}^{\dfrac{3}{2}}}} \right]_0^1\]
Putting the upper and lower limits, we get
\[ \Rightarrow \int\limits_0^1 {2t\left( {\sqrt {1 + {t^2}} } \right)} dt = \left[ {\dfrac{2}{3}{{\left( {1 + {{\left( 1 \right)}^2}} \right)}^{\dfrac{3}{2}}} - \dfrac{2}{3}{{\left( {1 + {{\left( 0 \right)}^2}} \right)}^{\dfrac{3}{2}}}} \right]\]
On simplification, we get
\[ \Rightarrow \int\limits_0^1 {2t\left( {\sqrt {1 + {t^2}} } \right)} dt = \left[ {\dfrac{2}{3}{{\left( 2 \right)}^{\dfrac{3}{2}}} - \dfrac{2}{3}{{\left( 1 \right)}^{\dfrac{3}{2}}}} \right]\]
On further simplification, we get
\[ \Rightarrow \int\limits_0^1 {2t\left( {\sqrt {1 + {t^2}} } \right)} dt = \dfrac{2}{3}\left( {{2^{\dfrac{3}{2}}} - 1} \right) - - - (7)\]
Putting \[(7)\] in \[(6)\], we get
\[ \Rightarrow {\text{Arc Length}} = 3 \times \dfrac{2}{3}\left( {{2^{\dfrac{3}{2}}} - 1} \right)\]
Cancelling the common terms, we get
\[ \therefore {\text{Arc Length}} = 2\left( {{2^{\dfrac{3}{2}}} - 1} \right)\]
Therefore, the length of the curve \[x = 1 + 3{t^2}\], \[y = 4 + 2{t^3}\] is \[2\left( {{2^{\dfrac{3}{2}}} - 1} \right)\].
Note: If we want to calculate the length of any curve given by \[f(x)\] in an interval \[a\] to \[b\], then \[f(x)\] must be continuous in the interval \[a\] to \[b\]. Also, we require \[f(x)\] to be differentiable and its derivative is required as we are integrating an expression involving \[f'(x)\].
Complete step by step answer:
We have \[x = 1 + 3{t^2}\] and \[y = 4 + 2{t^3}\].
Differentiating \[x\] with respect to \[t\], we get
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {1 + 3{t^2}} \right)\]
\[ \Rightarrow \dfrac{{dx}}{{dt}} = 6t - - - (1)\]
Differentiating \[y\] with respect to \[t\], we get
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dx}}\left( {4 + 2{t^3}} \right)\]
\[ \Rightarrow \dfrac{{dy}}{{dt}} = 6{t^2} - - - (2)\]
Dividing \[(2)\] and \[(1)\], we get
\[ \Rightarrow \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}} = \dfrac{{6{t^2}}}{{6t}}\]
On simplification, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = t - - - (3)\]
Also, from \[(1)\], we can write
\[ \Rightarrow dx = 6tdt - - - (4)\]
As we know that, \[{\text{Arc Length}} = \int\limits_a^b {\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} } dx - - - (5)\]
Given, \[0 \leqslant t \leqslant 1\]. Putting the values from \[(3)\] and \[(4)\] in \[(5)\], we get
\[ \Rightarrow {\text{Arc Length}} = \int\limits_0^1 {\left( {\sqrt {1 + {{\left( t \right)}^2}} } \right)} \times 6tdt\]
On rewriting, we get
\[ \Rightarrow {\text{Arc Length}} = 3 \times \int\limits_0^1 {2t\left( {\sqrt {1 + {t^2}} } \right)} dt - - - (6)\]
Now, let \[I = \int {2t\left( {\sqrt {1 + {t^2}} } \right)dt} \]
Let \[1 + {t^2} = u\]
Differentiating w.r.t \[t\], we get
\[ \Rightarrow 2t = \dfrac{{du}}{{dt}}\]
\[ \Rightarrow dt = \dfrac{{du}}{{2t}}\]
Therefore, we get
\[I = \int {2t \times \sqrt u \times \dfrac{{du}}{{2t}}} \]
Cancelling the common terms and on rewriting, we get
\[I = \int {{{\left( u \right)}^{\dfrac{1}{2}}}du} \]
On integrating, we get
\[ \Rightarrow I = \int {\dfrac{{{{\left( u \right)}^{\dfrac{1}{2} + 1}}}}{{\left( {\dfrac{1}{2} + 1} \right)}}du} \]
On simplification, we get
\[ \Rightarrow I = \dfrac{2}{3}{\left( u \right)^{\dfrac{3}{2}}}\]
Substituting back \[1 + {t^2} = u\], we get
\[ \Rightarrow I = \dfrac{2}{3}{\left( {1 + {t^2}} \right)^{\dfrac{3}{2}}}\]
So, \[\int\limits_0^1 {2t\left( {\sqrt {1 + {t^2}} } \right)} dt = \left[ {\dfrac{2}{3}{{\left( {1 + {t^2}} \right)}^{\dfrac{3}{2}}}} \right]_0^1\]
Putting the upper and lower limits, we get
\[ \Rightarrow \int\limits_0^1 {2t\left( {\sqrt {1 + {t^2}} } \right)} dt = \left[ {\dfrac{2}{3}{{\left( {1 + {{\left( 1 \right)}^2}} \right)}^{\dfrac{3}{2}}} - \dfrac{2}{3}{{\left( {1 + {{\left( 0 \right)}^2}} \right)}^{\dfrac{3}{2}}}} \right]\]
On simplification, we get
\[ \Rightarrow \int\limits_0^1 {2t\left( {\sqrt {1 + {t^2}} } \right)} dt = \left[ {\dfrac{2}{3}{{\left( 2 \right)}^{\dfrac{3}{2}}} - \dfrac{2}{3}{{\left( 1 \right)}^{\dfrac{3}{2}}}} \right]\]
On further simplification, we get
\[ \Rightarrow \int\limits_0^1 {2t\left( {\sqrt {1 + {t^2}} } \right)} dt = \dfrac{2}{3}\left( {{2^{\dfrac{3}{2}}} - 1} \right) - - - (7)\]
Putting \[(7)\] in \[(6)\], we get
\[ \Rightarrow {\text{Arc Length}} = 3 \times \dfrac{2}{3}\left( {{2^{\dfrac{3}{2}}} - 1} \right)\]
Cancelling the common terms, we get
\[ \therefore {\text{Arc Length}} = 2\left( {{2^{\dfrac{3}{2}}} - 1} \right)\]
Therefore, the length of the curve \[x = 1 + 3{t^2}\], \[y = 4 + 2{t^3}\] is \[2\left( {{2^{\dfrac{3}{2}}} - 1} \right)\].
Note: If we want to calculate the length of any curve given by \[f(x)\] in an interval \[a\] to \[b\], then \[f(x)\] must be continuous in the interval \[a\] to \[b\]. Also, we require \[f(x)\] to be differentiable and its derivative is required as we are integrating an expression involving \[f'(x)\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

