
Find the L.C.M of ${{x}^{3}}-2{{x}^{2}}-13x-10=0$ and ${{x}^{3}}-{{x}^{2}}-10x-8$.
Answer
611.1k+ views
Hint: We will be using the concept of factorization to factorize the polynomial and find its factor then we will use the concept of LCM to find the LCM.
Complete step-by-step answer:
Now, we have been given polynomial ${{x}^{3}}-2{{x}^{2}}-13x-10=0$ and ${{x}^{3}}-{{x}^{2}}-10x-8$and we have to find its LCM.
Now, we will first factorize the two polynomials as,
$f\left( x \right)={{x}^{3}}-2{{x}^{2}}-13x-10$
Now, to factorize it we have found its root by hit and trial so first we put $x=-1$.
$\begin{align}
& f\left( -1 \right)=-1-2+13-10 \\
& =-13+13 \\
& =0 \\
\end{align}$
So, $x=-1$ is a root of ${{x}^{3}}-2{{x}^{2}}-13x-10$. Therefore, by factor theorem $x+1=0$ is a factor of $f\left( x \right)$. Now, we will use long division to find other factors. So, we have,
\[x+1\overset{{{x}^{2}}-3x-10}{\overline{\left){\begin{align}
& {{x}^{3}}-2{{x}^{2}}-13x-10 \\
& \underline{\begin{align}
& {{x}^{3}}+{{x}^{2}} \\
& -\ \ \ - \\
\end{align}} \\
& \ \ \ \ \ \ -3{{x}^{2}}-13x \\
& \ \ \ \ \ \ \,\underline{\begin{align}
& -3{{x}^{2}}-3x \\
& +\ \ \ \ \ \ + \\
\end{align}} \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -10x-10 \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{-10x-10} \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \\
\end{align}}\right.}}\]
So, we have all the factors of $f\left( x \right)$ as,
$\begin{align}
& f\left( x \right)=\left( x+1 \right)\left( {{x}^{2}}-5x+2x-10 \right) \\
& =\left( x+1 \right)\left( x\left( x-5 \right)+2\left( x-5 \right) \right) \\
& f\left( x \right)=\left( x+1 \right)\left( x+2 \right)\left( x-5 \right)..........\left( 1 \right) \\
\end{align}$
Now, we have to do similarly for,
$g\left( x \right)={{x}^{3}}-{{x}^{2}}-10x-8$
Now, we put $x=-1$. So, we have,
$\begin{align}
& g\left( -1 \right)=-1-1+10-8 \\
& =-10+10 \\
& =0 \\
\end{align}$
So, we have $x+1=0$ a factor of $g\left( x \right)$.
Now, an long division we have,
\[x+1\overset{{{x}^{2}}-2x-8}{\overline{\left){\begin{align}
& {{x}^{3}}-{{x}^{2}}-10x-8 \\
& \underline{\begin{align}
& {{x}^{3}}+{{x}^{2}} \\
& -\ \ \ - \\
\end{align}} \\
& \ \ \ \ \ \ -2{{x}^{2}}-10x \\
& \ \ \ \ \ \ \,\underline{\begin{align}
& -2{{x}^{2}}-2x \\
& +\ \ \ \ \ \ + \\
\end{align}} \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -8x-8 \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{-8x-8} \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \\
\end{align}}\right.}}\]
So, we have,
$\begin{align}
& g\left( x \right)=\left( x+1 \right)\left( {{x}^{2}}-2x-8 \right) \\
& =\left( x+1 \right)\left( {{x}^{2}}-4x+2x-8 \right) \\
& =\left( x+1 \right)\left( x\left( x-4 \right)+2\left( x-4 \right) \right) \\
& g\left( x \right)=\left( x+1 \right)\left( x+2 \right)\left( x-4 \right) \\
\end{align}$
Now, we know that LCM is the least divisible by both $f\left( x \right)$ and $g\left( x \right)$. Therefore, the LCM will have the highest power of all factors in $f\left( x \right)$ and $g\left( x \right)$.
$LCM\left( f\left( x \right),g\left( x \right) \right)=\left( x+1 \right)\left( x+2 \right)\left( x-4 \right)\left( x-5 \right)$
Note: To solve these types of questions it is important to note the way we have factorized the cubic equation. Also, it is important to note that the LCM has all the factors of both the numbers and if some factors are common then we take the highest power in both of the factors.
Complete step-by-step answer:
Now, we have been given polynomial ${{x}^{3}}-2{{x}^{2}}-13x-10=0$ and ${{x}^{3}}-{{x}^{2}}-10x-8$and we have to find its LCM.
Now, we will first factorize the two polynomials as,
$f\left( x \right)={{x}^{3}}-2{{x}^{2}}-13x-10$
Now, to factorize it we have found its root by hit and trial so first we put $x=-1$.
$\begin{align}
& f\left( -1 \right)=-1-2+13-10 \\
& =-13+13 \\
& =0 \\
\end{align}$
So, $x=-1$ is a root of ${{x}^{3}}-2{{x}^{2}}-13x-10$. Therefore, by factor theorem $x+1=0$ is a factor of $f\left( x \right)$. Now, we will use long division to find other factors. So, we have,
\[x+1\overset{{{x}^{2}}-3x-10}{\overline{\left){\begin{align}
& {{x}^{3}}-2{{x}^{2}}-13x-10 \\
& \underline{\begin{align}
& {{x}^{3}}+{{x}^{2}} \\
& -\ \ \ - \\
\end{align}} \\
& \ \ \ \ \ \ -3{{x}^{2}}-13x \\
& \ \ \ \ \ \ \,\underline{\begin{align}
& -3{{x}^{2}}-3x \\
& +\ \ \ \ \ \ + \\
\end{align}} \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -10x-10 \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{-10x-10} \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \\
\end{align}}\right.}}\]
So, we have all the factors of $f\left( x \right)$ as,
$\begin{align}
& f\left( x \right)=\left( x+1 \right)\left( {{x}^{2}}-5x+2x-10 \right) \\
& =\left( x+1 \right)\left( x\left( x-5 \right)+2\left( x-5 \right) \right) \\
& f\left( x \right)=\left( x+1 \right)\left( x+2 \right)\left( x-5 \right)..........\left( 1 \right) \\
\end{align}$
Now, we have to do similarly for,
$g\left( x \right)={{x}^{3}}-{{x}^{2}}-10x-8$
Now, we put $x=-1$. So, we have,
$\begin{align}
& g\left( -1 \right)=-1-1+10-8 \\
& =-10+10 \\
& =0 \\
\end{align}$
So, we have $x+1=0$ a factor of $g\left( x \right)$.
Now, an long division we have,
\[x+1\overset{{{x}^{2}}-2x-8}{\overline{\left){\begin{align}
& {{x}^{3}}-{{x}^{2}}-10x-8 \\
& \underline{\begin{align}
& {{x}^{3}}+{{x}^{2}} \\
& -\ \ \ - \\
\end{align}} \\
& \ \ \ \ \ \ -2{{x}^{2}}-10x \\
& \ \ \ \ \ \ \,\underline{\begin{align}
& -2{{x}^{2}}-2x \\
& +\ \ \ \ \ \ + \\
\end{align}} \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -8x-8 \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{-8x-8} \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \\
\end{align}}\right.}}\]
So, we have,
$\begin{align}
& g\left( x \right)=\left( x+1 \right)\left( {{x}^{2}}-2x-8 \right) \\
& =\left( x+1 \right)\left( {{x}^{2}}-4x+2x-8 \right) \\
& =\left( x+1 \right)\left( x\left( x-4 \right)+2\left( x-4 \right) \right) \\
& g\left( x \right)=\left( x+1 \right)\left( x+2 \right)\left( x-4 \right) \\
\end{align}$
Now, we know that LCM is the least divisible by both $f\left( x \right)$ and $g\left( x \right)$. Therefore, the LCM will have the highest power of all factors in $f\left( x \right)$ and $g\left( x \right)$.
$LCM\left( f\left( x \right),g\left( x \right) \right)=\left( x+1 \right)\left( x+2 \right)\left( x-4 \right)\left( x-5 \right)$
Note: To solve these types of questions it is important to note the way we have factorized the cubic equation. Also, it is important to note that the LCM has all the factors of both the numbers and if some factors are common then we take the highest power in both of the factors.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

