Answer
Verified
447.9k+ views
Hint: Find the prime factors of 46, 72, and 84. Multiply the highest powers of each prime factor. The product thus obtained is the LCM.
Complete step by step solution:
We are given three numbers 46, 72, and 84.
We are asked to compute their LCM. LCM stands for least common multiple
And the method to be used is the prime factor method.
In this method we need to prime factorize each of the given numbers.
Then we multiply all the prime factors with the highest power.
Consider the prime factorizations of 46, 72, and 84.
Using the above computations, we will express the given numbers as products of their prime factors.
$
46 = 2 \times 23 \\
72 = 2 \times 2 \times 2 \times 3 \times 3 = {2^3} \times {3^2} \\
84 = 2 \times 2 \times 3 \times 7 = {2^2} \times 3 \times 7 \\
$
The prime factors are 2, 3, 7, and 23.
Highest power of 2$ = {2^3}$
Highest power of 3$ = {3^2}$
Highest power of 7$ = 7$
Highest power of 23$ = 23$
Therefore, LCM of 46, 72, and 84
$
= {2^3} \times {3^2} \times 7 \times 23 \\
= 11,592 \\
$
Hence the required LCM is 11,592.
Note: As the name suggests, while using the prime factor method, the number must be expressed as a product of its prime factors.
This is the difference between the prime factor method for LCM and the conventional method for finding LCM where we take into consideration the multiples.
Complete step by step solution:
We are given three numbers 46, 72, and 84.
We are asked to compute their LCM. LCM stands for least common multiple
And the method to be used is the prime factor method.
In this method we need to prime factorize each of the given numbers.
Then we multiply all the prime factors with the highest power.
Consider the prime factorizations of 46, 72, and 84.
Using the above computations, we will express the given numbers as products of their prime factors.
$
46 = 2 \times 23 \\
72 = 2 \times 2 \times 2 \times 3 \times 3 = {2^3} \times {3^2} \\
84 = 2 \times 2 \times 3 \times 7 = {2^2} \times 3 \times 7 \\
$
The prime factors are 2, 3, 7, and 23.
Highest power of 2$ = {2^3}$
Highest power of 3$ = {3^2}$
Highest power of 7$ = 7$
Highest power of 23$ = 23$
Therefore, LCM of 46, 72, and 84
$
= {2^3} \times {3^2} \times 7 \times 23 \\
= 11,592 \\
$
Hence the required LCM is 11,592.
Note: As the name suggests, while using the prime factor method, the number must be expressed as a product of its prime factors.
This is the difference between the prime factor method for LCM and the conventional method for finding LCM where we take into consideration the multiples.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths