
Find the Laplace transform: \[\dfrac{1}{{(s + 2)({s^2} + 4s + 9)}}\]
Answer
538.2k+ views
Hint: Here in this question, we have to find the Laplace transform of the given function. We solve the given function first by the partial fractions and then we determine the constant values for the partial fractions and then we apply the inverse Laplace transform formula and hence we determine the solution for the given function.
Complete step by step solution:
Consider the given function
\[\dfrac{1}{{(s + 2)({s^2} + 4s + 9)}}\]
This can be written as
\[ \Rightarrow \dfrac{1}{{(s + 2)({s^2} + 4s + 9)}} = \dfrac{A}{{(s + 2)}} + \dfrac{{Bs + C}}{{{s^2} + 4s + 9}}\]
Take the LCM in the RHS we get
\[ \Rightarrow \dfrac{1}{{(s + 2)({s^2} + 4s + 9)}} = \dfrac{{A({s^2} + 4s + 9) + Bs + C(s + 2)}}{{(s + 2)({s^2} + 4s + 9)}}\]
Hence on simplifying we have
\[ \Rightarrow 1 = A{s^2} + 4As + 9A + B{s^2} + 2Bs + Cs + 2C\]
Equate the coefficient of \[{s^2}\] , we have
\[ \Rightarrow 0 = A + B\]
\[ \Rightarrow A = - B\] --- (1)
Equate the coefficient of \[s\] , we have
\[ \Rightarrow 0 = 4A + 2B + C\]
\[ \Rightarrow C = - 4A - 2B\] ----(2)
Now equate the coefficients of the constant we get
\[ \Rightarrow 1 = 9A + 2C\] ----- (3)
Substitute the (2) in the (3) we get
\[ \Rightarrow 1 = 9A + 2( - 4A - 2B)\]
On simplifying we get
\[ \Rightarrow 1 = 9A - 8A - 4B\] --- (4)
Substitute the (1) in (4) we get
\[ \Rightarrow 1 = - 9B + 8B - 4B\]
On simplifying we get
\[ \Rightarrow 1 = - 5B\]
\[ \Rightarrow B = - \dfrac{1}{5}\]
Therefore from the equation (1) we have
\[ \Rightarrow A = \dfrac{1}{5}\]
From the equation (3) we have
\[ \Rightarrow 1 = \dfrac{9}{5} + 2C\]
Take \[\dfrac{9}{5}\] to LHS we get
\[ \Rightarrow 1 - \dfrac{9}{5} = 2C\]
\[ \Rightarrow - \dfrac{4}{5} = 2C\]
On simplifying the above equation we get
\[ \Rightarrow C = - \dfrac{2}{5}\]
Therefore the given equation is written as
\[ \Rightarrow \dfrac{1}{{(s + 2)({s^2} + 4s + 9)}} = \dfrac{1}{{5(s + 2)}} - \dfrac{s}{{5({s^2} + 4s + 9)}} - \dfrac{2}{{5({s^2} + 4s + 9)}}\]
On applying the inverse Laplace transform to the above function
\[ \Rightarrow \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{1}{{(s + 2)}}} \right) - \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{s}{{({s^2} + 4s + 4) + 5}}} \right) - \dfrac{2}{5}{L^{ - 1}}\left( {\dfrac{1}{{({s^2} + 4s + 4) + 5}}} \right)\]
On simplifying we get
\[ \Rightarrow \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{1}{{(s + 2)}}} \right) - \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{s}{{{{(s + 2)}^2} + {{(\sqrt 5 )}^2}}}} \right) - \dfrac{2}{5}{L^{ - 1}}\left( {\dfrac{1}{{{{(s + 2)}^2} + {{(\sqrt 5 )}^2}}}} \right)\]
\[ \Rightarrow \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{1}{{(s + 2)}}} \right) - \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{{s + 2 - 2}}{{{{(s + 2)}^2} + {{(\sqrt 5 )}^2}}}} \right) - \dfrac{2}{5}{L^{ - 1}}\left( {\dfrac{1}{{{{(s + 2)}^2} + {{(\sqrt 5 )}^2}}}} \right)\]
\[ \Rightarrow \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{1}{{(s + 2)}}} \right) - \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{{s + 2}}{{{{(s + 2)}^2} + {{(\sqrt 5 )}^2}}}} \right) + \dfrac{2}{5}{L^1}\left( {\dfrac{1}{{{{(s + 2)}^2} + {{(\sqrt 5 )}^2}}}} \right) - \dfrac{2}{5}{L^{ - 1}}\left( {\dfrac{1}{{{{(s + 2)}^2} + {{(\sqrt 5 )}^2}}}} \right)\]
On simplifying we get
\[ \Rightarrow \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{1}{{(s + 2)}}} \right) - \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{{s + 2}}{{{{(s + 2)}^2} + {{(\sqrt 5 )}^2}}}} \right)\]
On applying the formula we get
\[ \Rightarrow \dfrac{1}{5}{e^{ - 2t}} - \dfrac{1}{5}{e^{ - 2t}}\cos \left( {\sqrt 5 t} \right)\]
On taking common the above inequality is written as
\[ \Rightarrow \dfrac{{{e^{ - 2t}}}}{5}\left( {1 - \cos \left( {\sqrt 5 t} \right)} \right)\]
Therefore the Laplace transform of \[\dfrac{1}{{(s + 2)({s^2} + 4s + 9)}}\] is \[\dfrac{{{e^{ - 2t}}}}{5}\left( {1 - \cos \left( {\sqrt 5 t} \right)} \right)\]
So, the correct answer is “ \[\dfrac{{{e^{ - 2t}}}}{5}\left( {1 - \cos \left( {\sqrt 5 t} \right)} \right)\] ”.
Note: While solving the problems related to the Laplace transform we must know the Laplace transform formulas. Here we have used the Laplace formula, that is \[{L^{ - 1}}\left( {\dfrac{1}{{(s - a)}}} \right) = {e^{at}}\] and \[{L^{ - 1}}\left( {\dfrac{1}{{{{(s - a)}^2} + {b^2}}}} \right) = {e^{at}}\cos bt\] , hence we can obtain the required solution for the given question.
Complete step by step solution:
Consider the given function
\[\dfrac{1}{{(s + 2)({s^2} + 4s + 9)}}\]
This can be written as
\[ \Rightarrow \dfrac{1}{{(s + 2)({s^2} + 4s + 9)}} = \dfrac{A}{{(s + 2)}} + \dfrac{{Bs + C}}{{{s^2} + 4s + 9}}\]
Take the LCM in the RHS we get
\[ \Rightarrow \dfrac{1}{{(s + 2)({s^2} + 4s + 9)}} = \dfrac{{A({s^2} + 4s + 9) + Bs + C(s + 2)}}{{(s + 2)({s^2} + 4s + 9)}}\]
Hence on simplifying we have
\[ \Rightarrow 1 = A{s^2} + 4As + 9A + B{s^2} + 2Bs + Cs + 2C\]
Equate the coefficient of \[{s^2}\] , we have
\[ \Rightarrow 0 = A + B\]
\[ \Rightarrow A = - B\] --- (1)
Equate the coefficient of \[s\] , we have
\[ \Rightarrow 0 = 4A + 2B + C\]
\[ \Rightarrow C = - 4A - 2B\] ----(2)
Now equate the coefficients of the constant we get
\[ \Rightarrow 1 = 9A + 2C\] ----- (3)
Substitute the (2) in the (3) we get
\[ \Rightarrow 1 = 9A + 2( - 4A - 2B)\]
On simplifying we get
\[ \Rightarrow 1 = 9A - 8A - 4B\] --- (4)
Substitute the (1) in (4) we get
\[ \Rightarrow 1 = - 9B + 8B - 4B\]
On simplifying we get
\[ \Rightarrow 1 = - 5B\]
\[ \Rightarrow B = - \dfrac{1}{5}\]
Therefore from the equation (1) we have
\[ \Rightarrow A = \dfrac{1}{5}\]
From the equation (3) we have
\[ \Rightarrow 1 = \dfrac{9}{5} + 2C\]
Take \[\dfrac{9}{5}\] to LHS we get
\[ \Rightarrow 1 - \dfrac{9}{5} = 2C\]
\[ \Rightarrow - \dfrac{4}{5} = 2C\]
On simplifying the above equation we get
\[ \Rightarrow C = - \dfrac{2}{5}\]
Therefore the given equation is written as
\[ \Rightarrow \dfrac{1}{{(s + 2)({s^2} + 4s + 9)}} = \dfrac{1}{{5(s + 2)}} - \dfrac{s}{{5({s^2} + 4s + 9)}} - \dfrac{2}{{5({s^2} + 4s + 9)}}\]
On applying the inverse Laplace transform to the above function
\[ \Rightarrow \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{1}{{(s + 2)}}} \right) - \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{s}{{({s^2} + 4s + 4) + 5}}} \right) - \dfrac{2}{5}{L^{ - 1}}\left( {\dfrac{1}{{({s^2} + 4s + 4) + 5}}} \right)\]
On simplifying we get
\[ \Rightarrow \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{1}{{(s + 2)}}} \right) - \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{s}{{{{(s + 2)}^2} + {{(\sqrt 5 )}^2}}}} \right) - \dfrac{2}{5}{L^{ - 1}}\left( {\dfrac{1}{{{{(s + 2)}^2} + {{(\sqrt 5 )}^2}}}} \right)\]
\[ \Rightarrow \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{1}{{(s + 2)}}} \right) - \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{{s + 2 - 2}}{{{{(s + 2)}^2} + {{(\sqrt 5 )}^2}}}} \right) - \dfrac{2}{5}{L^{ - 1}}\left( {\dfrac{1}{{{{(s + 2)}^2} + {{(\sqrt 5 )}^2}}}} \right)\]
\[ \Rightarrow \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{1}{{(s + 2)}}} \right) - \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{{s + 2}}{{{{(s + 2)}^2} + {{(\sqrt 5 )}^2}}}} \right) + \dfrac{2}{5}{L^1}\left( {\dfrac{1}{{{{(s + 2)}^2} + {{(\sqrt 5 )}^2}}}} \right) - \dfrac{2}{5}{L^{ - 1}}\left( {\dfrac{1}{{{{(s + 2)}^2} + {{(\sqrt 5 )}^2}}}} \right)\]
On simplifying we get
\[ \Rightarrow \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{1}{{(s + 2)}}} \right) - \dfrac{1}{5}{L^{ - 1}}\left( {\dfrac{{s + 2}}{{{{(s + 2)}^2} + {{(\sqrt 5 )}^2}}}} \right)\]
On applying the formula we get
\[ \Rightarrow \dfrac{1}{5}{e^{ - 2t}} - \dfrac{1}{5}{e^{ - 2t}}\cos \left( {\sqrt 5 t} \right)\]
On taking common the above inequality is written as
\[ \Rightarrow \dfrac{{{e^{ - 2t}}}}{5}\left( {1 - \cos \left( {\sqrt 5 t} \right)} \right)\]
Therefore the Laplace transform of \[\dfrac{1}{{(s + 2)({s^2} + 4s + 9)}}\] is \[\dfrac{{{e^{ - 2t}}}}{5}\left( {1 - \cos \left( {\sqrt 5 t} \right)} \right)\]
So, the correct answer is “ \[\dfrac{{{e^{ - 2t}}}}{5}\left( {1 - \cos \left( {\sqrt 5 t} \right)} \right)\] ”.
Note: While solving the problems related to the Laplace transform we must know the Laplace transform formulas. Here we have used the Laplace formula, that is \[{L^{ - 1}}\left( {\dfrac{1}{{(s - a)}}} \right) = {e^{at}}\] and \[{L^{ - 1}}\left( {\dfrac{1}{{{{(s - a)}^2} + {b^2}}}} \right) = {e^{at}}\cos bt\] , hence we can obtain the required solution for the given question.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

