
Find the inverse of the matrix\[\left[ {\begin{array}{*{20}{c}}
1&2&1 \\
3&0&1 \\
0&2&1
\end{array}} \right]\] using the method of adjoint.
Answer
482.7k+ views
Hint: We find the determinant of the matrix. Use the method of minors and cofactors to find the adjoint of the given matrix. Use the formula of inverse of a matrix using adjoint of matrix and inverse of matrix.
* Determinant of a matrix \[\left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right] = a(ei - hf) - b(di - fg) + c(dh - eg)\]
* Adjoint of a matrix A is given by\[adjA = {\left[ {\begin{array}{*{20}{c}}
{{A_{11}}}&{{A_{12}}}&{{A_{13}}} \\
{{A_{21}}}&{{A_{22}}}&{{A_{23}}} \\
{{A_{31}}}&{{A_{32}}}&{{A_{33}}}
\end{array}} \right]^T}\], where T stands for transpose.
Each element \[{A_{ij}}\]is given by calculating the determinant of the matrix obtained by removing $i^{th}$ row and $j^{th}$ column from the matrix. Also, the sign of the element \[{A_{ij}}\]is given by \[{( - 1)^{i + j}}\].
* Inverse of a matrix A is given by \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adjA\]
Complete step by step solution:
Let us assume the matrix\[A = \left[ {\begin{array}{*{20}{c}}
1&2&1 \\
3&0&1 \\
0&2&1
\end{array}} \right]\]
We find the determinant of the matrix A using the formula of determinant.
\[ \Rightarrow \left| A \right| = 1\left( {(0 \times 1) - (2 \times 1)} \right) - 2\left( {(3 \times 1) - (0 \times 1)} \right) + 1\left( {(3 \times 2) - (0 \times 0)} \right)\]
Calculate the products in the brackets
\[ \Rightarrow \left| A \right| = 1\left( {0 - 2} \right) - 2\left( {3 - 0} \right) + 1\left( {6 - 0} \right)\]
\[ \Rightarrow \left| A \right| = 1 \times ( - 2) - 2 \times (3) + 1 \times (6)\]
Calculate the products
\[ \Rightarrow \left| A \right| = - 2 - 6 + 6\]
Cancel same terms with opposite signs
\[ \Rightarrow \left| A \right| = - 2\].................… (1)
Since the determinant of the matrix is non-negative, the inverse of the matrix exists.
Now we find the adjoint of matrix A
\[ \Rightarrow adjA = {\left[ {\begin{array}{*{20}{c}}
{{{( - 1)}^{1 + 1}}( - 2)}&{{{( - 1)}^{1 + 2}}(3)}&{{{( - 1)}^{1 + 3}}(6)} \\
{{{( - 1)}^{2 + 1}}(0)}&{{{( - 1)}^{2 + 2}}(1)}&{{{( - 1)}^{2 + 3}}(2)} \\
{{{( - 1)}^{3 + 1}}(2)}&{{{( - 1)}^{3 + 2}}( - 2)}&{{{( - 1)}^{3 + 3}}( - 6)}
\end{array}} \right]^T}\]
\[ \Rightarrow adjA = {\left[ {\begin{array}{*{20}{c}}
{{{( - 1)}^2}( - 2)}&{{{( - 1)}^3}(3)}&{{{( - 1)}^4}(6)} \\
{{{( - 1)}^3}(0)}&{{{( - 1)}^4}(1)}&{{{( - 1)}^5}(2)} \\
{{{( - 1)}^4}(2)}&{{{( - 1)}^5}( - 2)}&{{{( - 1)}^6}( - 6)}
\end{array}} \right]^T}\]
Write even powers of -1 equal to 1 and odd powers of -1 equal to -1
\[ \Rightarrow adjA = {\left[ {\begin{array}{*{20}{c}}
{(1)( - 2)}&{( - 1)(3)}&{(1)(6)} \\
{( - 1)(0)}&{(1)(1)}&{( - 1)(2)} \\
{(1)(2)}&{( - 1)( - 2)}&{(1)( - 6)}
\end{array}} \right]^T}\]
Multiply the negative signs
\[ \Rightarrow adjA = {\left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 3}&6 \\
0&1&{ - 2} \\
2&2&{ - 6}
\end{array}} \right]^T}\]
Now take transpose of the matrix in RHS, i.e. write columns in place of rows and rows in place of columns.
\[ \Rightarrow adjA = \left[ {\begin{array}{*{20}{c}}
{ - 2}&0&2 \\
{ - 3}&1&2 \\
6&{ - 2}&{ - 6}
\end{array}} \right]\]....................… (2)
Substitute the values of determinant A and adjoint A in the formula of inverse i.e.\[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adjA\]
Substitute values from equation (1) and (2)
\[ \Rightarrow {A^{ - 1}} = \dfrac{1}{{ - 2}}\left[ {\begin{array}{*{20}{c}}
{ - 2}&0&2 \\
{ - 3}&1&2 \\
6&{ - 2}&{ - 6}
\end{array}} \right]\]
\[\therefore \]The inverse of matrix\[\left[ {\begin{array}{*{20}{c}}
1&2&1 \\
3&0&1 \\
0&2&1
\end{array}} \right]\] is \[\dfrac{1}{{ - 2}}\left[ {\begin{array}{*{20}{c}}
{ - 2}&0&2 \\
{ - 3}&1&2 \\
6&{ - 2}&{ - 6}
\end{array}} \right]\].
Note: Students are likely to make the mistake of writing the value of determinant as positive because there is a modulus sign along with it, but keep in mind that sign is the sign for the matrix name, the value of determinant need not be positive.
* Determinant of a matrix \[\left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right] = a(ei - hf) - b(di - fg) + c(dh - eg)\]
* Adjoint of a matrix A is given by\[adjA = {\left[ {\begin{array}{*{20}{c}}
{{A_{11}}}&{{A_{12}}}&{{A_{13}}} \\
{{A_{21}}}&{{A_{22}}}&{{A_{23}}} \\
{{A_{31}}}&{{A_{32}}}&{{A_{33}}}
\end{array}} \right]^T}\], where T stands for transpose.
Each element \[{A_{ij}}\]is given by calculating the determinant of the matrix obtained by removing $i^{th}$ row and $j^{th}$ column from the matrix. Also, the sign of the element \[{A_{ij}}\]is given by \[{( - 1)^{i + j}}\].
* Inverse of a matrix A is given by \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adjA\]
Complete step by step solution:
Let us assume the matrix\[A = \left[ {\begin{array}{*{20}{c}}
1&2&1 \\
3&0&1 \\
0&2&1
\end{array}} \right]\]
We find the determinant of the matrix A using the formula of determinant.
\[ \Rightarrow \left| A \right| = 1\left( {(0 \times 1) - (2 \times 1)} \right) - 2\left( {(3 \times 1) - (0 \times 1)} \right) + 1\left( {(3 \times 2) - (0 \times 0)} \right)\]
Calculate the products in the brackets
\[ \Rightarrow \left| A \right| = 1\left( {0 - 2} \right) - 2\left( {3 - 0} \right) + 1\left( {6 - 0} \right)\]
\[ \Rightarrow \left| A \right| = 1 \times ( - 2) - 2 \times (3) + 1 \times (6)\]
Calculate the products
\[ \Rightarrow \left| A \right| = - 2 - 6 + 6\]
Cancel same terms with opposite signs
\[ \Rightarrow \left| A \right| = - 2\].................… (1)
Since the determinant of the matrix is non-negative, the inverse of the matrix exists.
Now we find the adjoint of matrix A
\[ \Rightarrow adjA = {\left[ {\begin{array}{*{20}{c}}
{{{( - 1)}^{1 + 1}}( - 2)}&{{{( - 1)}^{1 + 2}}(3)}&{{{( - 1)}^{1 + 3}}(6)} \\
{{{( - 1)}^{2 + 1}}(0)}&{{{( - 1)}^{2 + 2}}(1)}&{{{( - 1)}^{2 + 3}}(2)} \\
{{{( - 1)}^{3 + 1}}(2)}&{{{( - 1)}^{3 + 2}}( - 2)}&{{{( - 1)}^{3 + 3}}( - 6)}
\end{array}} \right]^T}\]
\[ \Rightarrow adjA = {\left[ {\begin{array}{*{20}{c}}
{{{( - 1)}^2}( - 2)}&{{{( - 1)}^3}(3)}&{{{( - 1)}^4}(6)} \\
{{{( - 1)}^3}(0)}&{{{( - 1)}^4}(1)}&{{{( - 1)}^5}(2)} \\
{{{( - 1)}^4}(2)}&{{{( - 1)}^5}( - 2)}&{{{( - 1)}^6}( - 6)}
\end{array}} \right]^T}\]
Write even powers of -1 equal to 1 and odd powers of -1 equal to -1
\[ \Rightarrow adjA = {\left[ {\begin{array}{*{20}{c}}
{(1)( - 2)}&{( - 1)(3)}&{(1)(6)} \\
{( - 1)(0)}&{(1)(1)}&{( - 1)(2)} \\
{(1)(2)}&{( - 1)( - 2)}&{(1)( - 6)}
\end{array}} \right]^T}\]
Multiply the negative signs
\[ \Rightarrow adjA = {\left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 3}&6 \\
0&1&{ - 2} \\
2&2&{ - 6}
\end{array}} \right]^T}\]
Now take transpose of the matrix in RHS, i.e. write columns in place of rows and rows in place of columns.
\[ \Rightarrow adjA = \left[ {\begin{array}{*{20}{c}}
{ - 2}&0&2 \\
{ - 3}&1&2 \\
6&{ - 2}&{ - 6}
\end{array}} \right]\]....................… (2)
Substitute the values of determinant A and adjoint A in the formula of inverse i.e.\[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adjA\]
Substitute values from equation (1) and (2)
\[ \Rightarrow {A^{ - 1}} = \dfrac{1}{{ - 2}}\left[ {\begin{array}{*{20}{c}}
{ - 2}&0&2 \\
{ - 3}&1&2 \\
6&{ - 2}&{ - 6}
\end{array}} \right]\]
\[\therefore \]The inverse of matrix\[\left[ {\begin{array}{*{20}{c}}
1&2&1 \\
3&0&1 \\
0&2&1
\end{array}} \right]\] is \[\dfrac{1}{{ - 2}}\left[ {\begin{array}{*{20}{c}}
{ - 2}&0&2 \\
{ - 3}&1&2 \\
6&{ - 2}&{ - 6}
\end{array}} \right]\].
Note: Students are likely to make the mistake of writing the value of determinant as positive because there is a modulus sign along with it, but keep in mind that sign is the sign for the matrix name, the value of determinant need not be positive.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE
