
Find the inverse of the matrix (if it exists):
\[A=\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]\]
Answer
509.1k+ views
Hint: To first find that if the inverse of the matrix exists we need to find the determinant of the matrix and then we need to find the inverse by using the Adjugate Matrix Method. To find the determinant we use the formula:
\[A=\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]\]
Determinant \[=a\left( e\times i-f\times h \right)+b\left( d\times i-f\times g \right)-c\left( d\times h-e\times g \right)\]
And for inverse of the matrix we use the formula:
\[{{A}^{\left( -1 \right)}}=\dfrac{1}{\left| A \right|}\times \left( \begin{matrix}
{{C}_{1,1}} & {{C}_{2,1}} & {{C}_{3,1}} \\
{{C}_{1,2}} & {{C}_{2,2}} & {{C}_{3,2}} \\
{{C}_{1,3}} & {{C}_{2,3}} & {{C}_{3,3}} \\
\end{matrix} \right)\]
where \[n\] is the positional value from \[0,0\] to \[2,2\] .
Complete step-by-step answer:
We use the triangle’s law as
\[{{C}_{1,1}}={{\left( -1 \right)}^{1+1}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=1\times \left( 3\times -1+0\times 2 \right)=-3\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{1+2}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 3\times \left( -1 \right)-0\times 5 \right)=3\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{1+3}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=1\times \left( 3\times 2-3\times 5 \right)=-9\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{2+1}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 0\times \left( -1 \right)-0\times 2 \right)=0\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{2+2}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 1\times \left( -1 \right)-0\times 5 \right)=-1\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{2+3}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 1\times 2-0\times 5 \right)\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{3+1}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 0\times 0-0\times 3 \right)=0\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{3+2}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 1\times 0-0\times 3 \right)=0\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{3+3}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=1\times \left( 1\times 3-0\times 3 \right)=3\]
Now placing the values in the formula we get:
\[{{A}^{\left( -1 \right)}}=\dfrac{1}{\left| A \right|}\times \left( \begin{matrix}
{{C}_{1,1}} & {{C}_{2,1}} & {{C}_{3,1}} \\
{{C}_{1,2}} & {{C}_{2,2}} & {{C}_{3,2}} \\
{{C}_{1,3}} & {{C}_{2,3}} & {{C}_{3,3}} \\
\end{matrix} \right)\]
\[{{A}^{\left( -1 \right)}}=\dfrac{1}{\left| -3 \right|}\times \left( \begin{matrix}
-3 & 0 & 0 \\
3 & -1 & 0 \\
-9 & -2 & 3 \\
\end{matrix} \right)\]
\[{{A}^{\left( -1 \right)}}=\left( \begin{matrix}
\dfrac{-3}{-3} & 0 & 0 \\
\dfrac{3}{-3} & \dfrac{-1}{-3} & 0 \\
\dfrac{-9}{-3} & \dfrac{-2}{-3} & \dfrac{3}{-3} \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 0 & 0 \\
-1 & \dfrac{1}{3} & 0 \\
3 & \dfrac{2}{3} & -1 \\
\end{matrix} \right)\]
Hence, the inverse of the matrix is
\[{{A}^{-1}}=\left( \begin{matrix}
1 & 0 & 0 \\
-1 & \dfrac{1}{3} & 0 \\
3 & \dfrac{2}{3} & -1 \\
\end{matrix} \right)\]
Note: Students may go wrong while finding the cofactor matrix and then arrange them in the matrix according to the value of \[{{C}_{n,n}}\] as \[\left( \begin{matrix}
{{C}_{1,1}} & {{C}_{2,1}} & {{C}_{3,1}} \\
{{C}_{1,2}} & {{C}_{2,2}} & {{C}_{3,2}} \\
{{C}_{1,3}} & {{C}_{2,3}} & {{C}_{3,3}} \\
\end{matrix} \right)\] and similarly the determinant is moded hence, the determinant will not change sign.
\[A=\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]\]
Determinant \[=a\left( e\times i-f\times h \right)+b\left( d\times i-f\times g \right)-c\left( d\times h-e\times g \right)\]
And for inverse of the matrix we use the formula:
\[{{A}^{\left( -1 \right)}}=\dfrac{1}{\left| A \right|}\times \left( \begin{matrix}
{{C}_{1,1}} & {{C}_{2,1}} & {{C}_{3,1}} \\
{{C}_{1,2}} & {{C}_{2,2}} & {{C}_{3,2}} \\
{{C}_{1,3}} & {{C}_{2,3}} & {{C}_{3,3}} \\
\end{matrix} \right)\]
where \[n\] is the positional value from \[0,0\] to \[2,2\] .
Complete step-by-step answer:
We use the triangle’s law as
\[{{C}_{1,1}}={{\left( -1 \right)}^{1+1}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=1\times \left( 3\times -1+0\times 2 \right)=-3\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{1+2}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 3\times \left( -1 \right)-0\times 5 \right)=3\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{1+3}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=1\times \left( 3\times 2-3\times 5 \right)=-9\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{2+1}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 0\times \left( -1 \right)-0\times 2 \right)=0\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{2+2}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 1\times \left( -1 \right)-0\times 5 \right)=-1\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{2+3}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 1\times 2-0\times 5 \right)\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{3+1}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 0\times 0-0\times 3 \right)=0\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{3+2}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 1\times 0-0\times 3 \right)=0\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{3+3}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=1\times \left( 1\times 3-0\times 3 \right)=3\]
Now placing the values in the formula we get:
\[{{A}^{\left( -1 \right)}}=\dfrac{1}{\left| A \right|}\times \left( \begin{matrix}
{{C}_{1,1}} & {{C}_{2,1}} & {{C}_{3,1}} \\
{{C}_{1,2}} & {{C}_{2,2}} & {{C}_{3,2}} \\
{{C}_{1,3}} & {{C}_{2,3}} & {{C}_{3,3}} \\
\end{matrix} \right)\]
\[{{A}^{\left( -1 \right)}}=\dfrac{1}{\left| -3 \right|}\times \left( \begin{matrix}
-3 & 0 & 0 \\
3 & -1 & 0 \\
-9 & -2 & 3 \\
\end{matrix} \right)\]
\[{{A}^{\left( -1 \right)}}=\left( \begin{matrix}
\dfrac{-3}{-3} & 0 & 0 \\
\dfrac{3}{-3} & \dfrac{-1}{-3} & 0 \\
\dfrac{-9}{-3} & \dfrac{-2}{-3} & \dfrac{3}{-3} \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 0 & 0 \\
-1 & \dfrac{1}{3} & 0 \\
3 & \dfrac{2}{3} & -1 \\
\end{matrix} \right)\]
Hence, the inverse of the matrix is
\[{{A}^{-1}}=\left( \begin{matrix}
1 & 0 & 0 \\
-1 & \dfrac{1}{3} & 0 \\
3 & \dfrac{2}{3} & -1 \\
\end{matrix} \right)\]
Note: Students may go wrong while finding the cofactor matrix and then arrange them in the matrix according to the value of \[{{C}_{n,n}}\] as \[\left( \begin{matrix}
{{C}_{1,1}} & {{C}_{2,1}} & {{C}_{3,1}} \\
{{C}_{1,2}} & {{C}_{2,2}} & {{C}_{3,2}} \\
{{C}_{1,3}} & {{C}_{2,3}} & {{C}_{3,3}} \\
\end{matrix} \right)\] and similarly the determinant is moded hence, the determinant will not change sign.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
