
Find the inverse of the matrix (if it exists):
\[A=\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]\]
Answer
573.6k+ views
Hint: To first find that if the inverse of the matrix exists we need to find the determinant of the matrix and then we need to find the inverse by using the Adjugate Matrix Method. To find the determinant we use the formula:
\[A=\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]\]
Determinant \[=a\left( e\times i-f\times h \right)+b\left( d\times i-f\times g \right)-c\left( d\times h-e\times g \right)\]
And for inverse of the matrix we use the formula:
\[{{A}^{\left( -1 \right)}}=\dfrac{1}{\left| A \right|}\times \left( \begin{matrix}
{{C}_{1,1}} & {{C}_{2,1}} & {{C}_{3,1}} \\
{{C}_{1,2}} & {{C}_{2,2}} & {{C}_{3,2}} \\
{{C}_{1,3}} & {{C}_{2,3}} & {{C}_{3,3}} \\
\end{matrix} \right)\]
where \[n\] is the positional value from \[0,0\] to \[2,2\] .
Complete step-by-step answer:
We use the triangle’s law as
\[{{C}_{1,1}}={{\left( -1 \right)}^{1+1}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=1\times \left( 3\times -1+0\times 2 \right)=-3\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{1+2}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 3\times \left( -1 \right)-0\times 5 \right)=3\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{1+3}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=1\times \left( 3\times 2-3\times 5 \right)=-9\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{2+1}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 0\times \left( -1 \right)-0\times 2 \right)=0\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{2+2}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 1\times \left( -1 \right)-0\times 5 \right)=-1\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{2+3}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 1\times 2-0\times 5 \right)\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{3+1}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 0\times 0-0\times 3 \right)=0\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{3+2}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 1\times 0-0\times 3 \right)=0\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{3+3}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=1\times \left( 1\times 3-0\times 3 \right)=3\]
Now placing the values in the formula we get:
\[{{A}^{\left( -1 \right)}}=\dfrac{1}{\left| A \right|}\times \left( \begin{matrix}
{{C}_{1,1}} & {{C}_{2,1}} & {{C}_{3,1}} \\
{{C}_{1,2}} & {{C}_{2,2}} & {{C}_{3,2}} \\
{{C}_{1,3}} & {{C}_{2,3}} & {{C}_{3,3}} \\
\end{matrix} \right)\]
\[{{A}^{\left( -1 \right)}}=\dfrac{1}{\left| -3 \right|}\times \left( \begin{matrix}
-3 & 0 & 0 \\
3 & -1 & 0 \\
-9 & -2 & 3 \\
\end{matrix} \right)\]
\[{{A}^{\left( -1 \right)}}=\left( \begin{matrix}
\dfrac{-3}{-3} & 0 & 0 \\
\dfrac{3}{-3} & \dfrac{-1}{-3} & 0 \\
\dfrac{-9}{-3} & \dfrac{-2}{-3} & \dfrac{3}{-3} \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 0 & 0 \\
-1 & \dfrac{1}{3} & 0 \\
3 & \dfrac{2}{3} & -1 \\
\end{matrix} \right)\]
Hence, the inverse of the matrix is
\[{{A}^{-1}}=\left( \begin{matrix}
1 & 0 & 0 \\
-1 & \dfrac{1}{3} & 0 \\
3 & \dfrac{2}{3} & -1 \\
\end{matrix} \right)\]
Note: Students may go wrong while finding the cofactor matrix and then arrange them in the matrix according to the value of \[{{C}_{n,n}}\] as \[\left( \begin{matrix}
{{C}_{1,1}} & {{C}_{2,1}} & {{C}_{3,1}} \\
{{C}_{1,2}} & {{C}_{2,2}} & {{C}_{3,2}} \\
{{C}_{1,3}} & {{C}_{2,3}} & {{C}_{3,3}} \\
\end{matrix} \right)\] and similarly the determinant is moded hence, the determinant will not change sign.
\[A=\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]\]
Determinant \[=a\left( e\times i-f\times h \right)+b\left( d\times i-f\times g \right)-c\left( d\times h-e\times g \right)\]
And for inverse of the matrix we use the formula:
\[{{A}^{\left( -1 \right)}}=\dfrac{1}{\left| A \right|}\times \left( \begin{matrix}
{{C}_{1,1}} & {{C}_{2,1}} & {{C}_{3,1}} \\
{{C}_{1,2}} & {{C}_{2,2}} & {{C}_{3,2}} \\
{{C}_{1,3}} & {{C}_{2,3}} & {{C}_{3,3}} \\
\end{matrix} \right)\]
where \[n\] is the positional value from \[0,0\] to \[2,2\] .
Complete step-by-step answer:
We use the triangle’s law as
\[{{C}_{1,1}}={{\left( -1 \right)}^{1+1}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=1\times \left( 3\times -1+0\times 2 \right)=-3\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{1+2}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 3\times \left( -1 \right)-0\times 5 \right)=3\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{1+3}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=1\times \left( 3\times 2-3\times 5 \right)=-9\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{2+1}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 0\times \left( -1 \right)-0\times 2 \right)=0\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{2+2}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 1\times \left( -1 \right)-0\times 5 \right)=-1\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{2+3}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 1\times 2-0\times 5 \right)\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{3+1}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 0\times 0-0\times 3 \right)=0\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{3+2}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=-1\times \left( 1\times 0-0\times 3 \right)=0\]
\[{{C}_{1,1}}={{\left( -1 \right)}^{3+3}}\left[ \begin{matrix}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1 \\
\end{matrix} \right]=1\times \left( 1\times 3-0\times 3 \right)=3\]
Now placing the values in the formula we get:
\[{{A}^{\left( -1 \right)}}=\dfrac{1}{\left| A \right|}\times \left( \begin{matrix}
{{C}_{1,1}} & {{C}_{2,1}} & {{C}_{3,1}} \\
{{C}_{1,2}} & {{C}_{2,2}} & {{C}_{3,2}} \\
{{C}_{1,3}} & {{C}_{2,3}} & {{C}_{3,3}} \\
\end{matrix} \right)\]
\[{{A}^{\left( -1 \right)}}=\dfrac{1}{\left| -3 \right|}\times \left( \begin{matrix}
-3 & 0 & 0 \\
3 & -1 & 0 \\
-9 & -2 & 3 \\
\end{matrix} \right)\]
\[{{A}^{\left( -1 \right)}}=\left( \begin{matrix}
\dfrac{-3}{-3} & 0 & 0 \\
\dfrac{3}{-3} & \dfrac{-1}{-3} & 0 \\
\dfrac{-9}{-3} & \dfrac{-2}{-3} & \dfrac{3}{-3} \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 0 & 0 \\
-1 & \dfrac{1}{3} & 0 \\
3 & \dfrac{2}{3} & -1 \\
\end{matrix} \right)\]
Hence, the inverse of the matrix is
\[{{A}^{-1}}=\left( \begin{matrix}
1 & 0 & 0 \\
-1 & \dfrac{1}{3} & 0 \\
3 & \dfrac{2}{3} & -1 \\
\end{matrix} \right)\]
Note: Students may go wrong while finding the cofactor matrix and then arrange them in the matrix according to the value of \[{{C}_{n,n}}\] as \[\left( \begin{matrix}
{{C}_{1,1}} & {{C}_{2,1}} & {{C}_{3,1}} \\
{{C}_{1,2}} & {{C}_{2,2}} & {{C}_{3,2}} \\
{{C}_{1,3}} & {{C}_{2,3}} & {{C}_{3,3}} \\
\end{matrix} \right)\] and similarly the determinant is moded hence, the determinant will not change sign.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

