
Find the inverse Laplace transform of \[G(s) = \dfrac{s}{s^{2}+2s+2}; \sigma >-1\].
Answer
510.9k+ views
Hint: Use the shifting property of Laplace transform to find the inverse Laplace transform.
If \[\mathcal{L}(F(t)) = f(s)\], then by shifting property, \[\mathcal{L}(e^{at}F(t)) = f(s-a)\].
For example, \[\mathcal{L}(e^{3t}\cos 2t) = \dfrac{s-3}{(s-3)^{2}+4}.
Complete step-by-step answer:
Given function is \[G(s) = \dfrac{s}{s^{2}+2s+2}; \sigma >-1\].
Simplify it into two terms as,
\[\begin{align*}\dfrac{s}{s^{2}+2s+2} &= \dfrac{s}{s^{2}+2s+1+1}\\ &= \dfrac{s}{(s+1)^{2}+1}\\ &= \dfrac{s+1-1}{(s+1)^{2}+1}\\ &= \dfrac{s+1}{(s+1)^{2}+1}-\dfrac{1}{(s+1)^{2}+1}\end{align*}\]
Now apply the inverse Laplace on both sides as,
\[\begin{align*}\mathcal{L}^{-1}(G(s)) &= \mathcal{L}^{-1}\dfrac{s+1}{(s+1)^{2}+1}-\dfrac{1}{(s+1)^{2}+1} \\ g(t) &= \mathcal{L}^{-1}\dfrac{s+1}{(s+1)^{2}+1} -\mathcal{L}^{-1}\dfrac{1}{(s+1)^{2}+1}\end{align*}\]
Now, \[\mathcal{L}(\sin at) = \dfrac{a}{s^{2}+a^{2}}\] and \[\mathcal{L}(\cos at) = \dfrac{s}{s^{2}+a^{2}}\].
Using the shifting property, \[\mathcal{L}(e^{at}\cos bt) = \dfrac{s-a}{(s-a)^{2}+b^{2}}\] and \[\mathcal{L}(e^{at}\sin bt) = \dfrac{-a}{(s-a)^{2}+b^{2}}\], the inverse Laplace transform is given as,
\[\begin{align*}g(t) &= \mathcal{L}^{-1}\dfrac{s+1}{(s+1)^{2}+1} -\mathcal{L}^{-1}\dfrac{1}{(s+1)^{2}+1}\\ &= e^{-t}\cos t-e^{-t}\sin t\\ &= e^{-t}(\cos t-\sin t)\end{align*}\]
Note: Laplace transform satisfy the linear property, i.e.,
\[\mathcal{L}{f(t)+g(t)} = \mathcal{L}{f(t)}+ \mathcal{L}{g(t)}\]
Laplace transform is an integral transform that converts a function of a real variable to a function of a complex variable.
If \[\mathcal{L}(F(t)) = f(s)\], then by shifting property, \[\mathcal{L}(e^{at}F(t)) = f(s-a)\].
For example, \[\mathcal{L}(e^{3t}\cos 2t) = \dfrac{s-3}{(s-3)^{2}+4}.
Complete step-by-step answer:
Given function is \[G(s) = \dfrac{s}{s^{2}+2s+2}; \sigma >-1\].
Simplify it into two terms as,
\[\begin{align*}\dfrac{s}{s^{2}+2s+2} &= \dfrac{s}{s^{2}+2s+1+1}\\ &= \dfrac{s}{(s+1)^{2}+1}\\ &= \dfrac{s+1-1}{(s+1)^{2}+1}\\ &= \dfrac{s+1}{(s+1)^{2}+1}-\dfrac{1}{(s+1)^{2}+1}\end{align*}\]
Now apply the inverse Laplace on both sides as,
\[\begin{align*}\mathcal{L}^{-1}(G(s)) &= \mathcal{L}^{-1}\dfrac{s+1}{(s+1)^{2}+1}-\dfrac{1}{(s+1)^{2}+1} \\ g(t) &= \mathcal{L}^{-1}\dfrac{s+1}{(s+1)^{2}+1} -\mathcal{L}^{-1}\dfrac{1}{(s+1)^{2}+1}\end{align*}\]
Now, \[\mathcal{L}(\sin at) = \dfrac{a}{s^{2}+a^{2}}\] and \[\mathcal{L}(\cos at) = \dfrac{s}{s^{2}+a^{2}}\].
Using the shifting property, \[\mathcal{L}(e^{at}\cos bt) = \dfrac{s-a}{(s-a)^{2}+b^{2}}\] and \[\mathcal{L}(e^{at}\sin bt) = \dfrac{-a}{(s-a)^{2}+b^{2}}\], the inverse Laplace transform is given as,
\[\begin{align*}g(t) &= \mathcal{L}^{-1}\dfrac{s+1}{(s+1)^{2}+1} -\mathcal{L}^{-1}\dfrac{1}{(s+1)^{2}+1}\\ &= e^{-t}\cos t-e^{-t}\sin t\\ &= e^{-t}(\cos t-\sin t)\end{align*}\]
Note: Laplace transform satisfy the linear property, i.e.,
\[\mathcal{L}{f(t)+g(t)} = \mathcal{L}{f(t)}+ \mathcal{L}{g(t)}\]
Laplace transform is an integral transform that converts a function of a real variable to a function of a complex variable.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Why is insulin not administered orally to a diabetic class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

How do you convert from joules to electron volts class 12 physics CBSE

Define Vant Hoff factor How is it related to the degree class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE
