
How do you find the intervals of increasing and decreasing using the first derivative given $y = {x^2} - 2x - 8$ ?
Answer
541.5k+ views
Hint:In the given question, we have to find the intervals in which a given function is increasing and decreasing by using the first derivative. The first derivative is defined as the differentiation of y with respect to x. A function is said to be increasing in a given interval if the value of y increases as we increase the value of x and the function is said to be decreasing if the value of y decreases on increasing the value of x. Using this information, we can find the correct answer.
Complete step by step answer:
We are given that $y = {x^2} - 2x - 8$
The first derivative of this function will be –
\[
\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}({x^2} - 2x - 8) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d({x^2})}}{{dx}} + \dfrac{{d( - 2x)}}{{dx}} + \dfrac{{d( -
8)}}{{dx}} \\
\]
We know that the differentiation of the product of a constant and a function is equal to the product of the constant and the derivative of the function, the derivative of ${x^n}$ is $n{x^{n - 1}}$ and the the derivative of a constant is zero. So,
$\dfrac{{dy}}{{dx}} = 2x - 2$
Now, in the increasing interval, the slope is positive, so –
$
\dfrac{{dy}}{{dx}} > 0 \\
\Rightarrow 2x - 2 > 0 \\
\Rightarrow 2x > 2 \\
\Rightarrow x > 1 \\
$
And in the decreasing interval, the slope is negative, so –
$
\dfrac{{dy}}{{dx}} < 0 \\
\Rightarrow 2x - 2 < 0 \\
\Rightarrow 2x < 2 \\
\Rightarrow x < 1 \\
$
Hence, the function $y = {x^2} - 2x - 8$ is increasing in the interval $(1,\infty )$ and decreasing in the interval $( - \infty ,1)$ .
Note: The first derivative of a function represents its slope at any point. Thus, in the increasing interval, the function will have a curve going upwards, that is, the slope of the function in that interval will be positive, and in the decreasing interval the function will have a curve going downwards, that is, the slope of the function in that interval will be negative.
Complete step by step answer:
We are given that $y = {x^2} - 2x - 8$
The first derivative of this function will be –
\[
\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}({x^2} - 2x - 8) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d({x^2})}}{{dx}} + \dfrac{{d( - 2x)}}{{dx}} + \dfrac{{d( -
8)}}{{dx}} \\
\]
We know that the differentiation of the product of a constant and a function is equal to the product of the constant and the derivative of the function, the derivative of ${x^n}$ is $n{x^{n - 1}}$ and the the derivative of a constant is zero. So,
$\dfrac{{dy}}{{dx}} = 2x - 2$
Now, in the increasing interval, the slope is positive, so –
$
\dfrac{{dy}}{{dx}} > 0 \\
\Rightarrow 2x - 2 > 0 \\
\Rightarrow 2x > 2 \\
\Rightarrow x > 1 \\
$
And in the decreasing interval, the slope is negative, so –
$
\dfrac{{dy}}{{dx}} < 0 \\
\Rightarrow 2x - 2 < 0 \\
\Rightarrow 2x < 2 \\
\Rightarrow x < 1 \\
$
Hence, the function $y = {x^2} - 2x - 8$ is increasing in the interval $(1,\infty )$ and decreasing in the interval $( - \infty ,1)$ .
Note: The first derivative of a function represents its slope at any point. Thus, in the increasing interval, the function will have a curve going upwards, that is, the slope of the function in that interval will be positive, and in the decreasing interval the function will have a curve going downwards, that is, the slope of the function in that interval will be negative.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

