
How do you find the interval of convergence \[\sum{\dfrac{{{4}^{n}}}{{{3}^{n}}+{{5}^{n}}}{{x}^{n}}}\] from $n=[0,\infty )$?
Answer
538.2k+ views
Hint: From the question we have been asked to find the interval of convergence. For solving this question first we will use the ratio test. The ratio test formulae for a series like our question will be $\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n}}+1}{{{a}_{n}}} \right|$. We will use division operations for further simplification and we solve the given question.
Complete step by step solution:
Firstly, as we mentioned above the ratio test states that a series $\sum\limits_{n=0}^{\infty }{{{a}_{n}}}$ converges absolutely id it obeys the below given condition.
$\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n}}+1}{{{a}_{n}}} \right|<1$
Here we use the basic operation in mathematics which is division for the ratio test.
Let us determine the ratio of the series \[\sum{\dfrac{{{4}^{n}}}{{{3}^{n}}+{{5}^{n}}}{{x}^{n}}}\].
$\Rightarrow \left| \dfrac{{{a}_{n}}+1}{{{a}_{n}}} \right|=\dfrac{\dfrac{{{4}^{n+1}}}{{{3}^{n+1}}+{{5}^{n+1}}}{{\left| x \right|}^{n+1}}}{\dfrac{{{4}^{n}}}{{{3}^{n}}+{{5}^{n}}}{{\left| x \right|}^{n}}}$
$\Rightarrow 4\left| x \right|\dfrac{{{3}^{n}}+{{5}^{n}}}{{{3}^{n+1}}+{{5}^{n+1}}}$
$\Rightarrow \dfrac{4}{5}\left| x \right|\dfrac{1+{{\left( \dfrac{3}{5} \right)}^{n}}}{1+{{\left( \dfrac{3}{5} \right)}^{n+1}}}$
Now, as $\left( \dfrac{3}{5} \right)<1$ we have that:
$\Rightarrow \displaystyle \lim_{n \to \infty }{{\left( \dfrac{3}{5} \right)}^{n}}=0$
So that:
$\Rightarrow \displaystyle \lim_{n \to \infty }\left( \dfrac{{{a}_{n}}+1}{{{a}_{n}}} \right)=\displaystyle \lim_{n \to \infty }\dfrac{4}{5}\left| x \right|\left( \dfrac{1+{{\left( \dfrac{3}{5} \right)}^{n}}}{1+{{\left( \dfrac{3}{5} \right)}^{n+1}}} \right)=\dfrac{4}{5}\left| x \right|$
We can then conclude that for:
$\left| x \right|<\dfrac{5}{4}\Rightarrow \displaystyle \lim_{n \to \infty }\left( \dfrac{{{a}_{n}}+1}{{{a}_{n}}} \right)<1$ and the series in the question is absolutely convergent
$\left| x \right|>\dfrac{5}{4}\Rightarrow \displaystyle \lim_{n \to \infty }\left( \dfrac{{{a}_{n}}+1}{{{a}_{n}}} \right)>1$ and the given series in the question is divergent
The case where $\left| x \right|=\dfrac{5}{4}$ is indeterminate and we have to analyze in detail.
In the case where $x=\pm \dfrac{5}{4}$ we have:
$\Rightarrow \left| {{a}_{n}} \right|=\left( \dfrac{{{4}^{n}}}{{{3}^{n}}+{{5}^{n}}} \right){{\left( \dfrac{5}{4} \right)}^{n}}=\left( \dfrac{{{5}^{n}}}{{{3}^{n}}+{{5}^{n}}} \right)$
$\Rightarrow \left| {{a}_{n}} \right|=\dfrac{1}{1+{{\left( \dfrac{3}{5} \right)}^{n}}}$
So that:
$\Rightarrow \displaystyle \lim_{n \to \infty }\left| {{a}_{n}} \right|=1>0$
And that means that the given series in the question can converge.
In conclusion the series is convergent in the interval $x\in \left( -\dfrac{5}{4},\dfrac{5}{4} \right)$ where it is also absolutely convergent.
Note: Students must be very careful in doing the calculations. Students should have good knowledge in the concept of limits and continuity as well as its applications like the ratio test. We must know that, the ratio test states that a series $\sum\limits_{n=0}^{\infty }{{{a}_{n}}}$ converges absolutely id it obeys the $\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n}}+1}{{{a}_{n}}} \right|<1$ condition for solving the question.
Complete step by step solution:
Firstly, as we mentioned above the ratio test states that a series $\sum\limits_{n=0}^{\infty }{{{a}_{n}}}$ converges absolutely id it obeys the below given condition.
$\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n}}+1}{{{a}_{n}}} \right|<1$
Here we use the basic operation in mathematics which is division for the ratio test.
Let us determine the ratio of the series \[\sum{\dfrac{{{4}^{n}}}{{{3}^{n}}+{{5}^{n}}}{{x}^{n}}}\].
$\Rightarrow \left| \dfrac{{{a}_{n}}+1}{{{a}_{n}}} \right|=\dfrac{\dfrac{{{4}^{n+1}}}{{{3}^{n+1}}+{{5}^{n+1}}}{{\left| x \right|}^{n+1}}}{\dfrac{{{4}^{n}}}{{{3}^{n}}+{{5}^{n}}}{{\left| x \right|}^{n}}}$
$\Rightarrow 4\left| x \right|\dfrac{{{3}^{n}}+{{5}^{n}}}{{{3}^{n+1}}+{{5}^{n+1}}}$
$\Rightarrow \dfrac{4}{5}\left| x \right|\dfrac{1+{{\left( \dfrac{3}{5} \right)}^{n}}}{1+{{\left( \dfrac{3}{5} \right)}^{n+1}}}$
Now, as $\left( \dfrac{3}{5} \right)<1$ we have that:
$\Rightarrow \displaystyle \lim_{n \to \infty }{{\left( \dfrac{3}{5} \right)}^{n}}=0$
So that:
$\Rightarrow \displaystyle \lim_{n \to \infty }\left( \dfrac{{{a}_{n}}+1}{{{a}_{n}}} \right)=\displaystyle \lim_{n \to \infty }\dfrac{4}{5}\left| x \right|\left( \dfrac{1+{{\left( \dfrac{3}{5} \right)}^{n}}}{1+{{\left( \dfrac{3}{5} \right)}^{n+1}}} \right)=\dfrac{4}{5}\left| x \right|$
We can then conclude that for:
$\left| x \right|<\dfrac{5}{4}\Rightarrow \displaystyle \lim_{n \to \infty }\left( \dfrac{{{a}_{n}}+1}{{{a}_{n}}} \right)<1$ and the series in the question is absolutely convergent
$\left| x \right|>\dfrac{5}{4}\Rightarrow \displaystyle \lim_{n \to \infty }\left( \dfrac{{{a}_{n}}+1}{{{a}_{n}}} \right)>1$ and the given series in the question is divergent
The case where $\left| x \right|=\dfrac{5}{4}$ is indeterminate and we have to analyze in detail.
In the case where $x=\pm \dfrac{5}{4}$ we have:
$\Rightarrow \left| {{a}_{n}} \right|=\left( \dfrac{{{4}^{n}}}{{{3}^{n}}+{{5}^{n}}} \right){{\left( \dfrac{5}{4} \right)}^{n}}=\left( \dfrac{{{5}^{n}}}{{{3}^{n}}+{{5}^{n}}} \right)$
$\Rightarrow \left| {{a}_{n}} \right|=\dfrac{1}{1+{{\left( \dfrac{3}{5} \right)}^{n}}}$
So that:
$\Rightarrow \displaystyle \lim_{n \to \infty }\left| {{a}_{n}} \right|=1>0$
And that means that the given series in the question can converge.
In conclusion the series is convergent in the interval $x\in \left( -\dfrac{5}{4},\dfrac{5}{4} \right)$ where it is also absolutely convergent.
Note: Students must be very careful in doing the calculations. Students should have good knowledge in the concept of limits and continuity as well as its applications like the ratio test. We must know that, the ratio test states that a series $\sum\limits_{n=0}^{\infty }{{{a}_{n}}}$ converges absolutely id it obeys the $\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n}}+1}{{{a}_{n}}} \right|<1$ condition for solving the question.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain zero factorial class 11 maths CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Why is 1 molar aqueous solution more concentrated than class 11 chemistry CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

SiO2GeO2 SnOand PbOare respectively A acidic amphoteric class 11 chemistry CBSE

