
Find the interval in which the function \[f(x)=3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}+5\] is
A. Strictly increasing
B. Strictly decreasing
Answer
591k+ views
Hint: To solve this question, we will use the basic concept of a function to be increasing or decreasing which is given below.
A function g(x) is strictly increasing in an interval of its derivative g'(x) is strictly greater than 0 that is $g'(x)> 0$ then g(x) is strictly increasing in that interval. A function h(x) is strictly decreasing in an interval if it's derivative h'(x) is strictly less than 0.
We will put f'(x) = 0 to get required interval points and then check in all intervals if $f'(X) >0\Rightarrow f'(x) <0$
Complete step-by-step solution:
Given, \[f(x)=3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}+5\]
A function g(x) is strictly increasing in an interval of its derivative g'(x) is strictly greater than 0 that is $g'(x)>0$ then g(x) is strictly increasing in that interval. A function h(x) is strictly decreasing in an interval if it's derivative h'(x) is strictly less than 0.
That is if $h'(x)<0$ then h(x) is strictly decreasing in that given interval.
We have, \[f(x)=3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}+5\]
We have \[\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}\]
Using this above and differentiating f(x) with respect to x, we get
\[\begin{align}
& \dfrac{d}{dx}f(x)=f'(x)=3\times 4{{x}^{3}}-4\times 3{{x}^{2}}-12\times 2x+0 \\
& f'(x)=12{{x}^{3}}-12{{x}^{2}}-24x\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
\end{align}\]
To find interval of increasing or decreasing we will put f'(x) = 0 and try to get value of x possible when $f'(x) = 0$.
Putting $f'(x) = 0$
\[12{{x}^{3}}-12{{x}^{2}}-24x\text{ }=\text{ }0\]
Taking 12x common from above equation, we get
\[\begin{align}
& 12\left( x \right)\left( {{x}^{2}}-x-2 \right)=0 \\
& \Rightarrow 12x\left( {{x}^{2}}-x-2 \right)=0 \\
\end{align}\]
Splitting by middle term the equation $\left( {{x}^{2}}-x-2 \right)$ by using $-2x+x=-x$ we get
\[\begin{align}
& 12x\left( {{x}^{2}}-2x+x-2 \right)=0 \\
& 12x\left( x\left( x-2 \right)+1\left( x-2 \right) \right)=0 \\
& \left( 12x \right)\left( x-2 \right)\left( x+1 \right)=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
So, we have three possibility of x.
\[\begin{align}
& 12x=0\Rightarrow x=0 \\
& x-2=0\Rightarrow x=2 \\
& x+1=0\Rightarrow x=-1 \\
\end{align}\]
Hence, we will divide intervals using values of x obtained above.
The intervals are \[\left( -\infty ,-1 \right),\left( -1,0 \right),\left( 0,2 \right),\left( 2,\infty \right)\]
Make this interval on the real line as below:
Consider equation (i) \[f'(x)=12{{x}^{3}}-12{{x}^{2}}-24x\]
Also, \[f'(x)=\left( 12x \right)\left( x-2 \right)\left( x+1 \right)\] by equation (ii)
Case I - $x\in \left( -\infty ,-1 \right)$
When $x\in \left( -\infty ,-1 \right)$
Then \[\begin{align}
& 12x=\text{negative} \\
& x+1\text{=negative} \\
& x-2\text{=negative} \\
\end{align}\]
So, product of all \[(12x)(x+1)(x-2)=(-)(-)(-)=(-)=\text{negative}\]
So, $f'(x)<0$ when $x\in \left( -\infty ,-1 \right)$
Case II - $x\in \left( -1,0 \right)$
When $x\in \left( -1,0 \right)$
Then \[\begin{align}
& 12x=\text{negative} \\
& x+1\text{=positive} \\
& x-2\text{=negative} \\
\end{align}\]
So, product of all \[(12x)(x+1)(x-2)=(-)(+)(-)=(+)=\text{Positive}\]
So, $f'(x)>0$ when $x\in \left( -1,0 \right)$
Case III - $x\in \left( 0,2 \right)$
When $x\in \left( 0,2 \right)$
Then \[\begin{align}
& 12x=\text{positive} \\
& x+1\text{=positive} \\
& x-2\text{=negative} \\
\end{align}\]
So product of all \[(12x)(x+1)(x-2)=(+)(+)(-)=(-)=\text{Negative}\]
So, $f'(x)<0$ when $x\in \left( 0,2 \right)$
Case IV - $x\in \left( 2,\infty \right)$
When $x\in \left( 2,\infty \right)$
Then \[\begin{align}
& 12x=\text{positive} \\
& x+1\text{=positive} \\
& x-2\text{=positive} \\
\end{align}\]
So product of all \[(12x)(x+1)(x-2)=(+)(+)(+)=(+)=\text{positive}\]
So, $f'(x)>0$ when $x\in \left( 2,\infty \right)$
Hence, from Case I, II, III, IV we see that
$f'(x)>0$ when $x\in \left( -1,0 \right)\cup \left( 2,\infty \right)$ and $f'(x)<0$ when $x\in \left( -\infty ,-1 \right)\cup \left( 0,2 \right)$
So, f(x) is A: strictly increasing when $x\in \left( -1,0 \right)\cup \left( 2,\infty \right)$
And B: strictly decreasing when $x\in \left( -\infty ,-1 \right)\cup \left( 0,2 \right)$
Note: Always remember that, because we are considering $f'(x)>0\Rightarrow f'(x)<0$ and not considering $f'(x)\ge 0\Rightarrow f'(x)\le 0$ therefore, the end points like here end point are (0, 2, -1) cannot be included in the interval. That is, we will always have open interval (a, b) and not closed interval [a, b] used in such cases as we do not have $f'(x)\ge 0\Rightarrow f'(x)\le 0$
A function g(x) is strictly increasing in an interval of its derivative g'(x) is strictly greater than 0 that is $g'(x)> 0$ then g(x) is strictly increasing in that interval. A function h(x) is strictly decreasing in an interval if it's derivative h'(x) is strictly less than 0.
We will put f'(x) = 0 to get required interval points and then check in all intervals if $f'(X) >0\Rightarrow f'(x) <0$
Complete step-by-step solution:
Given, \[f(x)=3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}+5\]
A function g(x) is strictly increasing in an interval of its derivative g'(x) is strictly greater than 0 that is $g'(x)>0$ then g(x) is strictly increasing in that interval. A function h(x) is strictly decreasing in an interval if it's derivative h'(x) is strictly less than 0.
That is if $h'(x)<0$ then h(x) is strictly decreasing in that given interval.
We have, \[f(x)=3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}+5\]
We have \[\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}\]
Using this above and differentiating f(x) with respect to x, we get
\[\begin{align}
& \dfrac{d}{dx}f(x)=f'(x)=3\times 4{{x}^{3}}-4\times 3{{x}^{2}}-12\times 2x+0 \\
& f'(x)=12{{x}^{3}}-12{{x}^{2}}-24x\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
\end{align}\]
To find interval of increasing or decreasing we will put f'(x) = 0 and try to get value of x possible when $f'(x) = 0$.
Putting $f'(x) = 0$
\[12{{x}^{3}}-12{{x}^{2}}-24x\text{ }=\text{ }0\]
Taking 12x common from above equation, we get
\[\begin{align}
& 12\left( x \right)\left( {{x}^{2}}-x-2 \right)=0 \\
& \Rightarrow 12x\left( {{x}^{2}}-x-2 \right)=0 \\
\end{align}\]
Splitting by middle term the equation $\left( {{x}^{2}}-x-2 \right)$ by using $-2x+x=-x$ we get
\[\begin{align}
& 12x\left( {{x}^{2}}-2x+x-2 \right)=0 \\
& 12x\left( x\left( x-2 \right)+1\left( x-2 \right) \right)=0 \\
& \left( 12x \right)\left( x-2 \right)\left( x+1 \right)=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
So, we have three possibility of x.
\[\begin{align}
& 12x=0\Rightarrow x=0 \\
& x-2=0\Rightarrow x=2 \\
& x+1=0\Rightarrow x=-1 \\
\end{align}\]
Hence, we will divide intervals using values of x obtained above.
The intervals are \[\left( -\infty ,-1 \right),\left( -1,0 \right),\left( 0,2 \right),\left( 2,\infty \right)\]
Make this interval on the real line as below:
Consider equation (i) \[f'(x)=12{{x}^{3}}-12{{x}^{2}}-24x\]
Also, \[f'(x)=\left( 12x \right)\left( x-2 \right)\left( x+1 \right)\] by equation (ii)
Case I - $x\in \left( -\infty ,-1 \right)$
When $x\in \left( -\infty ,-1 \right)$
Then \[\begin{align}
& 12x=\text{negative} \\
& x+1\text{=negative} \\
& x-2\text{=negative} \\
\end{align}\]
So, product of all \[(12x)(x+1)(x-2)=(-)(-)(-)=(-)=\text{negative}\]
So, $f'(x)<0$ when $x\in \left( -\infty ,-1 \right)$
Case II - $x\in \left( -1,0 \right)$
When $x\in \left( -1,0 \right)$
Then \[\begin{align}
& 12x=\text{negative} \\
& x+1\text{=positive} \\
& x-2\text{=negative} \\
\end{align}\]
So, product of all \[(12x)(x+1)(x-2)=(-)(+)(-)=(+)=\text{Positive}\]
So, $f'(x)>0$ when $x\in \left( -1,0 \right)$
Case III - $x\in \left( 0,2 \right)$
When $x\in \left( 0,2 \right)$
Then \[\begin{align}
& 12x=\text{positive} \\
& x+1\text{=positive} \\
& x-2\text{=negative} \\
\end{align}\]
So product of all \[(12x)(x+1)(x-2)=(+)(+)(-)=(-)=\text{Negative}\]
So, $f'(x)<0$ when $x\in \left( 0,2 \right)$
Case IV - $x\in \left( 2,\infty \right)$
When $x\in \left( 2,\infty \right)$
Then \[\begin{align}
& 12x=\text{positive} \\
& x+1\text{=positive} \\
& x-2\text{=positive} \\
\end{align}\]
So product of all \[(12x)(x+1)(x-2)=(+)(+)(+)=(+)=\text{positive}\]
So, $f'(x)>0$ when $x\in \left( 2,\infty \right)$
Hence, from Case I, II, III, IV we see that
$f'(x)>0$ when $x\in \left( -1,0 \right)\cup \left( 2,\infty \right)$ and $f'(x)<0$ when $x\in \left( -\infty ,-1 \right)\cup \left( 0,2 \right)$
So, f(x) is A: strictly increasing when $x\in \left( -1,0 \right)\cup \left( 2,\infty \right)$
And B: strictly decreasing when $x\in \left( -\infty ,-1 \right)\cup \left( 0,2 \right)$
Note: Always remember that, because we are considering $f'(x)>0\Rightarrow f'(x)<0$ and not considering $f'(x)\ge 0\Rightarrow f'(x)\le 0$ therefore, the end points like here end point are (0, 2, -1) cannot be included in the interval. That is, we will always have open interval (a, b) and not closed interval [a, b] used in such cases as we do not have $f'(x)\ge 0\Rightarrow f'(x)\le 0$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

