
Find the intensity at a point on a screen in Young’s double slit experiment where the interfering waves of equal intensity have a path difference of (i) $\dfrac{\lambda }{4}$ and (ii) $\dfrac{\lambda }{3}$
Answer
569.7k+ views
Hint: Use the value of path difference given to find out the value of phase difference. To figure out the intensity at a point in Young’s double slit experiment, use the formula to find the resultant intensity at a point.
Complete step by step answer:
Given, the intensities of interfering waves are equals that is,
${I_1} = {I_2} = {I_o}$ (1)
Phase difference can be written as,
$\phi = \dfrac{{2\pi }}{\lambda }\Delta x$
Where $\lambda $ is the wavelength and $\Delta x$ is the phase difference.
The resultant intensity at a point is given as
$I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \phi $(2)
(i) For path difference $\Delta x = \dfrac{\lambda }{4}$
Phase difference, $\phi $ = $\dfrac{{2\pi }}{\lambda }\Delta x$ $= \dfrac{{2\pi }}{\lambda } \times $ $\dfrac{\lambda }{4}$ = $\dfrac{\pi }{2}$
The resultant intensity at a point is
$I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \phi $
Putting the values of ${I_1}$, ${I_2}$ and $\phi $, we have
$I = {I_0} + {I_0} + 2\sqrt {{I_0}{I_0}} \cos$ $\dfrac{\pi }{2} \\$
$\Rightarrow I $= $2{I_0}$
(ii) For path difference $\Delta x = \dfrac{\lambda }{3}$
Phase difference, $\phi = \dfrac{{2\pi }}{\lambda }\Delta x = \dfrac{{2\pi }}{\lambda } \times \dfrac{\lambda }{3} = \dfrac{{2\pi }}{3}$
The resultant intensity at a point is
$I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \phi $
Putting the values of ${I_1}$, ${I_2}$ and $\phi $, we have
$I = {I_0} + {I_0} + 2\sqrt {{I_0}{I_0}} \cos \dfrac{{2\pi }}{3} \\$
$ \Rightarrow I = 2{I_0} + 2{I_0}\left( { - \dfrac{1}{2}} \right) \\$
$ \Rightarrow I = {I_0} \\$
Therefore, for a path difference of $\dfrac{\lambda }{4}$ and $\dfrac{\lambda }{3}$, the resultant intensities at a point are $2{I_0}$ and ${I_0}$ respectively.
Note:
Here, the intensities of the interfering waves are the same but in some cases the intensities might be different. So, before proceeding we should always check whether the interfering waves have same intensities or different. The double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles.
Complete step by step answer:
Given, the intensities of interfering waves are equals that is,
${I_1} = {I_2} = {I_o}$ (1)
Phase difference can be written as,
$\phi = \dfrac{{2\pi }}{\lambda }\Delta x$
Where $\lambda $ is the wavelength and $\Delta x$ is the phase difference.
The resultant intensity at a point is given as
$I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \phi $(2)
(i) For path difference $\Delta x = \dfrac{\lambda }{4}$
Phase difference, $\phi $ = $\dfrac{{2\pi }}{\lambda }\Delta x$ $= \dfrac{{2\pi }}{\lambda } \times $ $\dfrac{\lambda }{4}$ = $\dfrac{\pi }{2}$
The resultant intensity at a point is
$I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \phi $
Putting the values of ${I_1}$, ${I_2}$ and $\phi $, we have
$I = {I_0} + {I_0} + 2\sqrt {{I_0}{I_0}} \cos$ $\dfrac{\pi }{2} \\$
$\Rightarrow I $= $2{I_0}$
(ii) For path difference $\Delta x = \dfrac{\lambda }{3}$
Phase difference, $\phi = \dfrac{{2\pi }}{\lambda }\Delta x = \dfrac{{2\pi }}{\lambda } \times \dfrac{\lambda }{3} = \dfrac{{2\pi }}{3}$
The resultant intensity at a point is
$I = {I_1} + {I_2} + 2\sqrt {{I_1}{I_2}} \cos \phi $
Putting the values of ${I_1}$, ${I_2}$ and $\phi $, we have
$I = {I_0} + {I_0} + 2\sqrt {{I_0}{I_0}} \cos \dfrac{{2\pi }}{3} \\$
$ \Rightarrow I = 2{I_0} + 2{I_0}\left( { - \dfrac{1}{2}} \right) \\$
$ \Rightarrow I = {I_0} \\$
Therefore, for a path difference of $\dfrac{\lambda }{4}$ and $\dfrac{\lambda }{3}$, the resultant intensities at a point are $2{I_0}$ and ${I_0}$ respectively.
Note:
Here, the intensities of the interfering waves are the same but in some cases the intensities might be different. So, before proceeding we should always check whether the interfering waves have same intensities or different. The double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

