
Find the integration of $\int {\dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}dx} $.
Answer
618.9k+ views
Hint: In this question first of all multiply and divide with 2 both in numerator and denominator to break the integration into a simplified form. Use the concept of partial fractions to resolve the integration further to simply it.
Complete step-by-step answer:
Let $I = \int {\dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}dx} $
Multiply and divide by 2 in the integral we get,
$I = \int {\dfrac{{2 - 2{x^2}}}{{2x\left( {1 - 2x} \right)}}dx} = \int {\dfrac{{2{x^2} - 2}}{{2x\left( {2x - 1} \right)}}dx} $
Now the above integral is also written as
$ \Rightarrow I = \int {\left( {\dfrac{{x - 2}}{{2x\left( {2x - 1} \right)}} + \dfrac{1}{2}} \right)dx} $, $\left[ {\because \dfrac{{2{x^2} - 2}}{{2x\left( {2x - 1} \right)}} = \dfrac{{x - 2}}{{2x\left( {2x - 1} \right)}} + \dfrac{1}{2}} \right]$
Apply partial fraction
So let,
$\dfrac{{x - 2}}{{2x\left( {2x - 1} \right)}} = \dfrac{A}{{2x}} + \dfrac{B}{{2x - 1}}$
$ \Rightarrow x - 2 = A\left( {2x - 1} \right) + B\left( {2x} \right)$
Now comparing the terms we have,
$ \Rightarrow 2A + 2B = 1$……………………… (1) (Comparing x terms)
And $ - A = - 2 \Rightarrow A = 2$
So from equation (1) we have,
$\begin{gathered}
\Rightarrow 2\left( 2 \right) + 2B = 1 \\
\Rightarrow 2B = 1 - 4 = - 3 \\
\Rightarrow B = \dfrac{{ - 3}}{2} \\
\end{gathered} $
$ \Rightarrow \dfrac{{x - 2}}{{2x\left( {2x - 1} \right)}} = \dfrac{2}{{2x}} + \dfrac{{\dfrac{{ - 3}}{2}}}{{2x - 1}}$
So the integral becomes
$ \Rightarrow I = \int {\left( {\dfrac{2}{{2x}} + \dfrac{{\dfrac{{ - 3}}{2}}}{{2x - 1}} + \dfrac{1}{2}} \right)dx} $
$ \Rightarrow I = \int {\left( {\dfrac{1}{x} - \dfrac{3}{{2\left( {2x - 1} \right)}} + \dfrac{1}{2}} \right)dx} $
Now integrate the above equation we have, as we know integration of $\dfrac{1}{x}$ is ln x and integration of $\dfrac{1}{{ax + b}}$ is $\dfrac{{\ln \left( {ax + b} \right)}}{a}$ so use these properties we have,
$ \Rightarrow I = \ln x - \dfrac{3}{2}\left( {\dfrac{{\ln \left( {2x - 1} \right)}}{2}} \right) + \dfrac{1}{2}\left( x \right) + c$, where c is some arbitrary integration constant.
So this is the required value of the integration.
Note: Whenever we face such types of problems the key concept is to have a good grasp over the standard integration form just like integration of $\dfrac{1}{x}$ is ln x. This always helps after simplification of the integral to get the right answer.
Complete step-by-step answer:
Let $I = \int {\dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}dx} $
Multiply and divide by 2 in the integral we get,
$I = \int {\dfrac{{2 - 2{x^2}}}{{2x\left( {1 - 2x} \right)}}dx} = \int {\dfrac{{2{x^2} - 2}}{{2x\left( {2x - 1} \right)}}dx} $
Now the above integral is also written as
$ \Rightarrow I = \int {\left( {\dfrac{{x - 2}}{{2x\left( {2x - 1} \right)}} + \dfrac{1}{2}} \right)dx} $, $\left[ {\because \dfrac{{2{x^2} - 2}}{{2x\left( {2x - 1} \right)}} = \dfrac{{x - 2}}{{2x\left( {2x - 1} \right)}} + \dfrac{1}{2}} \right]$
Apply partial fraction
So let,
$\dfrac{{x - 2}}{{2x\left( {2x - 1} \right)}} = \dfrac{A}{{2x}} + \dfrac{B}{{2x - 1}}$
$ \Rightarrow x - 2 = A\left( {2x - 1} \right) + B\left( {2x} \right)$
Now comparing the terms we have,
$ \Rightarrow 2A + 2B = 1$……………………… (1) (Comparing x terms)
And $ - A = - 2 \Rightarrow A = 2$
So from equation (1) we have,
$\begin{gathered}
\Rightarrow 2\left( 2 \right) + 2B = 1 \\
\Rightarrow 2B = 1 - 4 = - 3 \\
\Rightarrow B = \dfrac{{ - 3}}{2} \\
\end{gathered} $
$ \Rightarrow \dfrac{{x - 2}}{{2x\left( {2x - 1} \right)}} = \dfrac{2}{{2x}} + \dfrac{{\dfrac{{ - 3}}{2}}}{{2x - 1}}$
So the integral becomes
$ \Rightarrow I = \int {\left( {\dfrac{2}{{2x}} + \dfrac{{\dfrac{{ - 3}}{2}}}{{2x - 1}} + \dfrac{1}{2}} \right)dx} $
$ \Rightarrow I = \int {\left( {\dfrac{1}{x} - \dfrac{3}{{2\left( {2x - 1} \right)}} + \dfrac{1}{2}} \right)dx} $
Now integrate the above equation we have, as we know integration of $\dfrac{1}{x}$ is ln x and integration of $\dfrac{1}{{ax + b}}$ is $\dfrac{{\ln \left( {ax + b} \right)}}{a}$ so use these properties we have,
$ \Rightarrow I = \ln x - \dfrac{3}{2}\left( {\dfrac{{\ln \left( {2x - 1} \right)}}{2}} \right) + \dfrac{1}{2}\left( x \right) + c$, where c is some arbitrary integration constant.
So this is the required value of the integration.
Note: Whenever we face such types of problems the key concept is to have a good grasp over the standard integration form just like integration of $\dfrac{1}{x}$ is ln x. This always helps after simplification of the integral to get the right answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

