
Find the integral of the function $ \dfrac{1-\cos x}{1+\cos x} $
Answer
458.4k+ views
Hint: Remember the Trigonometric Identities ! There’s always a hint in the question if you observe it carefully.
Trigonometric identities that might be helpful are $ \cos 2\theta =2{{\cos }^{2}}\theta -1 $ , $ \cos 2\theta =1-2{{\sin }^{2}}\theta $ etc.
Complete step-by-step answer:
Trigonometric identities used are:
$ \cos 2\theta =2{{\cos }^{2}}\theta -1 $ ,
$ \cos 2\theta =1-2{{\sin }^{2}}\theta $ ,
$ {{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 $ .
We need to find $ \int{\dfrac{1-\cos x}{1+\cos x}} $ .
We know that $ \cos 2\theta =2{{\cos }^{2}}\theta -1 $ (trigonometric identity)
$ \cos 2\theta +1=2{{\cos }^{2}}\theta $
$ {{\cos }^{2}}\theta =\dfrac{\cos 2\theta +1}{2} $
Replacing $ \theta $ with $ \dfrac{x}{2} $ , we get
$ {{\cos }^{2}}\dfrac{x}{2}=\dfrac{\cos 2\dfrac{x}{2}+1}{2} $
$ {{\cos }^{2}}\dfrac{x}{2}=\dfrac{\cos x+1}{2} $
$ 2{{\cos }^{2}}\dfrac{x}{2}=\cos x+1 $ --equation 1
Similarly, we know that $ \cos 2\theta =1-2{{\sin }^{2}}\theta $ (trigonometric identity)
$ 2{{\sin }^{2}}\theta =1-\cos 2\theta $
Replacing $ \theta $ with $ \dfrac{x}{2} $ , we get
$ 2{{\sin }^{2}}\dfrac{x}{2}=1-\cos x $ --equation 2
Substituting equation 1 and equation 2 , we get
$\Rightarrow \int{\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}}} $
$\Rightarrow \int{{{\tan }^{2}}\dfrac{x}{2}} $
We know that $ {{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 $ (trigonometric identity)
Replacing $ \theta $ with $ \dfrac{x}{2} $ , we get
$ \Rightarrow {{\tan }^{2}}\dfrac{x}{2}={{\sec }^{2}}\dfrac{x}{2}-1 $
Therefore,
$\Rightarrow \int{\left( {{\sec }^{2}}\dfrac{x}{2}-1 \right)}dx $
$\Rightarrow \int{{{\sec }^{2}}\dfrac{x}{2}}dx $ $ -\int{dx} $ --equation 3
Let’s find $ \int{{{\sec }^{2}}\dfrac{x}{2}}dx $ by substitution method:
Let $ \dfrac{x}{2} $ be u, then on differentiating both sides we get, $ \dfrac{1}{2}dx=du $
$ dx=2du $
$\Rightarrow \int{{{\sec }^{2}}\dfrac{x}{2}}dx=2\int{{{\sec }^{2}}u}du $
We know that $ \int{{{\sec }^{2}}xdx=\tan x} $ +C (trigonometric identity)
Where C is the integral constant
Therefore, $ 2\int{{{\sec }^{2}}u}du $ = $ 2\left( \tan u+C \right) $
Replacing u with $ \dfrac{x}{2} $ , we get
$\Rightarrow 2\tan \dfrac{x}{2}+C $ --equation 4
(2C is also a constant represented by C)
We know that, $ \int{dx} $ = x+C --equation 5
(C being the integral constant)
Substituting equation 4 and equation 5 in equation 3, we get
$\Rightarrow 2\tan \dfrac{x}{2}-x+C $
Hence, $ \int{\dfrac{1-\cos x}{1+\cos x}} $ = $ 2\tan \dfrac{x}{2}-x+C $
So, the correct answer is “ $ \int{\dfrac{1-\cos x}{1+\cos x}} $ = $ 2\tan \dfrac{x}{2}-x+C $ ”.
Note: Keeping in mind some standard integral rules can save time and solve the question much faster. For example, in this question one need not show integration of $ {{\sec }^{2}}x $ and can directly solve the question. This will take less time to solve the question. Similarly one can remember other standard integral rules, as many as possible!
Trigonometric identities that might be helpful are $ \cos 2\theta =2{{\cos }^{2}}\theta -1 $ , $ \cos 2\theta =1-2{{\sin }^{2}}\theta $ etc.
Complete step-by-step answer:
Trigonometric identities used are:
$ \cos 2\theta =2{{\cos }^{2}}\theta -1 $ ,
$ \cos 2\theta =1-2{{\sin }^{2}}\theta $ ,
$ {{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 $ .
We need to find $ \int{\dfrac{1-\cos x}{1+\cos x}} $ .
We know that $ \cos 2\theta =2{{\cos }^{2}}\theta -1 $ (trigonometric identity)
$ \cos 2\theta +1=2{{\cos }^{2}}\theta $
$ {{\cos }^{2}}\theta =\dfrac{\cos 2\theta +1}{2} $
Replacing $ \theta $ with $ \dfrac{x}{2} $ , we get
$ {{\cos }^{2}}\dfrac{x}{2}=\dfrac{\cos 2\dfrac{x}{2}+1}{2} $
$ {{\cos }^{2}}\dfrac{x}{2}=\dfrac{\cos x+1}{2} $
$ 2{{\cos }^{2}}\dfrac{x}{2}=\cos x+1 $ --equation 1
Similarly, we know that $ \cos 2\theta =1-2{{\sin }^{2}}\theta $ (trigonometric identity)
$ 2{{\sin }^{2}}\theta =1-\cos 2\theta $
Replacing $ \theta $ with $ \dfrac{x}{2} $ , we get
$ 2{{\sin }^{2}}\dfrac{x}{2}=1-\cos x $ --equation 2
Substituting equation 1 and equation 2 , we get
$\Rightarrow \int{\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}}} $
$\Rightarrow \int{{{\tan }^{2}}\dfrac{x}{2}} $
We know that $ {{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 $ (trigonometric identity)
Replacing $ \theta $ with $ \dfrac{x}{2} $ , we get
$ \Rightarrow {{\tan }^{2}}\dfrac{x}{2}={{\sec }^{2}}\dfrac{x}{2}-1 $
Therefore,
$\Rightarrow \int{\left( {{\sec }^{2}}\dfrac{x}{2}-1 \right)}dx $
$\Rightarrow \int{{{\sec }^{2}}\dfrac{x}{2}}dx $ $ -\int{dx} $ --equation 3
Let’s find $ \int{{{\sec }^{2}}\dfrac{x}{2}}dx $ by substitution method:
Let $ \dfrac{x}{2} $ be u, then on differentiating both sides we get, $ \dfrac{1}{2}dx=du $
$ dx=2du $
$\Rightarrow \int{{{\sec }^{2}}\dfrac{x}{2}}dx=2\int{{{\sec }^{2}}u}du $
We know that $ \int{{{\sec }^{2}}xdx=\tan x} $ +C (trigonometric identity)
Where C is the integral constant
Therefore, $ 2\int{{{\sec }^{2}}u}du $ = $ 2\left( \tan u+C \right) $
Replacing u with $ \dfrac{x}{2} $ , we get
$\Rightarrow 2\tan \dfrac{x}{2}+C $ --equation 4
(2C is also a constant represented by C)
We know that, $ \int{dx} $ = x+C --equation 5
(C being the integral constant)
Substituting equation 4 and equation 5 in equation 3, we get
$\Rightarrow 2\tan \dfrac{x}{2}-x+C $
Hence, $ \int{\dfrac{1-\cos x}{1+\cos x}} $ = $ 2\tan \dfrac{x}{2}-x+C $
So, the correct answer is “ $ \int{\dfrac{1-\cos x}{1+\cos x}} $ = $ 2\tan \dfrac{x}{2}-x+C $ ”.
Note: Keeping in mind some standard integral rules can save time and solve the question much faster. For example, in this question one need not show integration of $ {{\sec }^{2}}x $ and can directly solve the question. This will take less time to solve the question. Similarly one can remember other standard integral rules, as many as possible!
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
