
Find the integral of ${\text{sinx}}{\text{.sin2x}}{\text{.sin3x}}$, denoted by $\int {{\text{sinx sin2x sin3x}}} {\text{ dx}}$.
Answer
600k+ views
Hint – To find the integral of ${\text{sinx}}{\text{.sin2x}}{\text{.sin3x}}$, we simplify the term using trigonometric identities and then apply the formulas for integrals of sine and cosine functions to approach the answer.
Complete step by step answer:
Let us start off by simplifying the first two terms of the equation,
$\int {{\text{sinx sin2x sin3x}}} {\text{ dx}}$= $\int {{\text{(sinx sin2x) sin3x}}} {\text{ dx}}$
We know that 2 SinA SinB = - cos (A + B) + cos (A – B)
⟹SinA SinB = $\dfrac{1}{2}$[-Cos(A+B) + Cos(A-B)]
⟹SinA SinB = $\dfrac{1}{2}$[Cos(A-B) – Cos(A+B)]
We compare this with Sinx Sin2x, we get A = x and B = 2x
⟹Sinx Sin2x = $\dfrac{1}{2}$[Cos(x-2x) – Cos(x+2x)]
⟹Sinx Sin2x = $\dfrac{1}{2}$[Cos(-x) – Cos3x]
We know for the trigonometric function cosine, Cos(-x) = Cos x.
So Sinx Sin2x = $\dfrac{1}{2}$[Cosx – Cos3x]
Hence our equation $\int {{\text{sinx sin2x sin3x}}} {\text{ dx}}$= $\int {\dfrac{1}{2}\left( {{\text{cosx - cos3x}}} \right)\sin 3{\text{x dx}}} $
= $\dfrac{1}{2}\int {\left( {{\text{cosx - cos3x}}} \right)\sin 3{\text{x dx}}} $
= $\dfrac{1}{2}\int {\left( {{\text{cosx sin3x - cos3x sin3x}}} \right){\text{dx}}} $
= $\dfrac{1}{2}\left[ {\int {{\text{cosx sin3x dx - }}\int {{\text{cos3x sin3x}}} {\text{ dx}}} } \right]$ - (1)
We solve both the terms in equation (1) individually for easy simplification,
First let us solve$\int {{\text{cosx sin3x dx}}} $:
We know that 2 SinA CosB = Sin(A+B) + Sin(A-B)
⟹${\text{SinA CosB}}$ = $\dfrac{1}{2}\left[ {{\text{Sin(A + B) + Sin(A - B)}}} \right]$
Comparing this to the above equation we get, A = 3x and B = x
⟹Sin3x Cosx = $\dfrac{1}{2}$[Sin(x+3x) + Sin(3x-x)]
= $\dfrac{1}{2}$[Sin4x + Sin2x]
Hence, $\int {{\text{Sin3x Cosx dx = }}\dfrac{1}{2}\int {\left[ {{\text{Sin4x + Sin2x}}} \right]} {\text{ dx}}} $.
Now let us solve $\int {{\text{cos3x sin3x}}} {\text{ dx}}$
We know that 2 SinA CosB = Sin(A+B) + Sin(A-B)
⟹${\text{SinA CosB}}$ = $\dfrac{1}{2}\left[ {{\text{Sin(A + B) + Sin(A - B)}}} \right]$
Comparing this to the above equation we get, A = 3x and B = 3x
⟹Sin3x Cos3x = $\dfrac{1}{2}$[Sin(3x+3x) + Sin(3x-3x)]
= $\dfrac{1}{2}$[Sin6x + Sin0]
= $\dfrac{1}{2}$Sin6x dx
Hence, $\int {{\text{Sin3x Cos3x dx = }}\dfrac{1}{2}\int {\left[ {{\text{Sin6x}}} \right]} {\text{ dx}}} $.
Thus, our original equation becomes
$\int {{\text{sinx sin2x sin3x}}} {\text{ dx}}$= $\dfrac{1}{2}\left[ {\int {{\text{cosx sin3x dx - }}\int {{\text{cos3x sin3x}}} {\text{ dx}}} } \right]$
= $\dfrac{1}{2}\left[ {\dfrac{1}{2}\int {\left( {{\text{sin4x + sin2x}}} \right){\text{ dx - }}\dfrac{1}{2}\int {\left( {{\text{sin6x}}} \right)} {\text{ dx}}} } \right]$
= $\dfrac{1}{4}\left[ {\int {{\text{sin4x dx + }}\int {{\text{sin2x dx}}} {\text{ - }}\int {{\text{sin6x dx}}} } } \right]$
We know$\int {{\text{sin}}\left( {{\text{ax + b}}} \right)} {\text{ dx = - }}\dfrac{{{\text{cos}}\left( {{\text{ax + b}}} \right)}}{{\text{a}}} + {\text{C}}$, where C is the integral constant.
Comparing this formula with the above equation we get, a=4, a=2 and a=6 for first, second and third terms respectively and b=0 for all terms.
Hence our equation becomes,
$\int {{\text{sinx sin2x sin3x}}} {\text{ dx}}$= $\dfrac{1}{4}\left[ {\dfrac{{ - {\text{cos4x}}}}{4} + \left( {\dfrac{{ - {\text{cos2x}}}}{2}} \right) - \left( {\dfrac{{ - {\text{cos6x}}}}{6}} \right)} \right] + {\text{C}}$
= $\dfrac{1}{4}\left[ {\dfrac{{{\text{cos6x}}}}{6} - \dfrac{{{\text{cos4x}}}}{4} - \dfrac{{{\text{cos2x}}}}{2}} \right] + {\text{C}}$
Hence the answer.
Note – In order to solve this type of questions the key is to have a very good knowledge in trigonometric identities and formulas of trigonometric functions, which include the functions sin and cos, as they play a key role in simplification. It is also very important to split the terms and solve them individually as it is easy to approach the answer that way.
Complete step by step answer:
Let us start off by simplifying the first two terms of the equation,
$\int {{\text{sinx sin2x sin3x}}} {\text{ dx}}$= $\int {{\text{(sinx sin2x) sin3x}}} {\text{ dx}}$
We know that 2 SinA SinB = - cos (A + B) + cos (A – B)
⟹SinA SinB = $\dfrac{1}{2}$[-Cos(A+B) + Cos(A-B)]
⟹SinA SinB = $\dfrac{1}{2}$[Cos(A-B) – Cos(A+B)]
We compare this with Sinx Sin2x, we get A = x and B = 2x
⟹Sinx Sin2x = $\dfrac{1}{2}$[Cos(x-2x) – Cos(x+2x)]
⟹Sinx Sin2x = $\dfrac{1}{2}$[Cos(-x) – Cos3x]
We know for the trigonometric function cosine, Cos(-x) = Cos x.
So Sinx Sin2x = $\dfrac{1}{2}$[Cosx – Cos3x]
Hence our equation $\int {{\text{sinx sin2x sin3x}}} {\text{ dx}}$= $\int {\dfrac{1}{2}\left( {{\text{cosx - cos3x}}} \right)\sin 3{\text{x dx}}} $
= $\dfrac{1}{2}\int {\left( {{\text{cosx - cos3x}}} \right)\sin 3{\text{x dx}}} $
= $\dfrac{1}{2}\int {\left( {{\text{cosx sin3x - cos3x sin3x}}} \right){\text{dx}}} $
= $\dfrac{1}{2}\left[ {\int {{\text{cosx sin3x dx - }}\int {{\text{cos3x sin3x}}} {\text{ dx}}} } \right]$ - (1)
We solve both the terms in equation (1) individually for easy simplification,
First let us solve$\int {{\text{cosx sin3x dx}}} $:
We know that 2 SinA CosB = Sin(A+B) + Sin(A-B)
⟹${\text{SinA CosB}}$ = $\dfrac{1}{2}\left[ {{\text{Sin(A + B) + Sin(A - B)}}} \right]$
Comparing this to the above equation we get, A = 3x and B = x
⟹Sin3x Cosx = $\dfrac{1}{2}$[Sin(x+3x) + Sin(3x-x)]
= $\dfrac{1}{2}$[Sin4x + Sin2x]
Hence, $\int {{\text{Sin3x Cosx dx = }}\dfrac{1}{2}\int {\left[ {{\text{Sin4x + Sin2x}}} \right]} {\text{ dx}}} $.
Now let us solve $\int {{\text{cos3x sin3x}}} {\text{ dx}}$
We know that 2 SinA CosB = Sin(A+B) + Sin(A-B)
⟹${\text{SinA CosB}}$ = $\dfrac{1}{2}\left[ {{\text{Sin(A + B) + Sin(A - B)}}} \right]$
Comparing this to the above equation we get, A = 3x and B = 3x
⟹Sin3x Cos3x = $\dfrac{1}{2}$[Sin(3x+3x) + Sin(3x-3x)]
= $\dfrac{1}{2}$[Sin6x + Sin0]
= $\dfrac{1}{2}$Sin6x dx
Hence, $\int {{\text{Sin3x Cos3x dx = }}\dfrac{1}{2}\int {\left[ {{\text{Sin6x}}} \right]} {\text{ dx}}} $.
Thus, our original equation becomes
$\int {{\text{sinx sin2x sin3x}}} {\text{ dx}}$= $\dfrac{1}{2}\left[ {\int {{\text{cosx sin3x dx - }}\int {{\text{cos3x sin3x}}} {\text{ dx}}} } \right]$
= $\dfrac{1}{2}\left[ {\dfrac{1}{2}\int {\left( {{\text{sin4x + sin2x}}} \right){\text{ dx - }}\dfrac{1}{2}\int {\left( {{\text{sin6x}}} \right)} {\text{ dx}}} } \right]$
= $\dfrac{1}{4}\left[ {\int {{\text{sin4x dx + }}\int {{\text{sin2x dx}}} {\text{ - }}\int {{\text{sin6x dx}}} } } \right]$
We know$\int {{\text{sin}}\left( {{\text{ax + b}}} \right)} {\text{ dx = - }}\dfrac{{{\text{cos}}\left( {{\text{ax + b}}} \right)}}{{\text{a}}} + {\text{C}}$, where C is the integral constant.
Comparing this formula with the above equation we get, a=4, a=2 and a=6 for first, second and third terms respectively and b=0 for all terms.
Hence our equation becomes,
$\int {{\text{sinx sin2x sin3x}}} {\text{ dx}}$= $\dfrac{1}{4}\left[ {\dfrac{{ - {\text{cos4x}}}}{4} + \left( {\dfrac{{ - {\text{cos2x}}}}{2}} \right) - \left( {\dfrac{{ - {\text{cos6x}}}}{6}} \right)} \right] + {\text{C}}$
= $\dfrac{1}{4}\left[ {\dfrac{{{\text{cos6x}}}}{6} - \dfrac{{{\text{cos4x}}}}{4} - \dfrac{{{\text{cos2x}}}}{2}} \right] + {\text{C}}$
Hence the answer.
Note – In order to solve this type of questions the key is to have a very good knowledge in trigonometric identities and formulas of trigonometric functions, which include the functions sin and cos, as they play a key role in simplification. It is also very important to split the terms and solve them individually as it is easy to approach the answer that way.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

