
How do you find the integral of \[\ln ({x^2} - 1)dx\] ?
Answer
546k+ views
Hint:In order to determine the answer of above definite integral use the formula of integration by parts i.e. $\int {f(x)g'(x)dx = f(x)g(x) - \int {f'(x)g(x)dx} } $ and assume $f(x) = {\cos ^{ - 1}}x$and$g'(x) = 1$ and calculate $f'(x)$and $g(x)$and put into the formula and use the substitution method to find the integral of the last term by splitting into two terms using partial fractions in the formula .
Formula:
$\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $
$\int {\dfrac{1}{x} = \ln x + C} $
\[{\cos ^2}x + {\sin ^2}x = 1\]
$\int {f(x)g'(x)dx = f(x)g(x) - \int {f'(x)g(x)dx} } $
Complete step by step solution:
We are given an expression \[\ln ({x^2} - 1)dx\] and we have to calculate its integral.
To calculate the integral of \[\ln ({x^2} - 1)dx\] ,we will be using Integration by parts method
The formula for calculation of integration of parts is
$\int {f(x)g'(x)dx = f(x)g(x) - \int {f'(x)g(x)dx} } $
In our question Let assume
$f(x) = \ln ({x^2} - 1)
And $g'(x) = 1$
As we know that the derivative of function x is equal to 1
So $g(x) = x$ and now calculating the derivative of $f(x)$with respect to x using rule of derivative
$\dfrac{d}{{dx}}\ln X = \dfrac{1}{X}.\dfrac{d}{{dx}}X$ By Chaining Rule
therefore ,taking $X = {x^2} - 1$
$
f'(x) = \dfrac{1}{{{x^2} - 1}}.\dfrac{d}{{dx}}({x^2} - 1) \\
= \dfrac{1}{{{x^2} - 1}}(2x) \\
= \dfrac{{2x}}{{{x^2} - 1}} \\
$
now putting the values of $f(x),f'(x),g(x)\,and\,g'(x)$into the formula of Integration by parts
\[
\int {\ln ({x^2} - 1)dx = } x\ln ({x^2} - 1) - \int {x.\dfrac{{2x}}{{{x^2} - 1}}} dx \\
= x\ln ({x^2} - 1) - \int {\dfrac{{2{x^2}}}{{{x^2} - 1}}dx} \\
= x\ln ({x^2} - 1) - 2\int {\dfrac{{{x^2}}}{{{x^2} - 1}}dx} \\
= x\ln ({x^2} - 1) - 2\int {\dfrac{{{x^2} - 1 + 1}}{{{x^2} - 1}}} dx \\
= x\ln ({x^2} - 1) - 2\int {1 + \dfrac{1}{{{x^2} - 1}}} dx \\
= x\ln ({x^2} - 1) - 2x - 2\int {\dfrac{1}{{{x^2} - 1}}} dx \\
\]
Using identity $({A^2} - {B^2}) = (A + B)(A - B)$
\[ = x\ln ({x^2} - 1) - 2x - 2\int {\dfrac{1}{{\left( {x - 1} \right)\left( {x + 1} \right)}}} dx\]
Using Partial fractions method to split \[\dfrac{1}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\] in to \[\dfrac{1}{2}\left( {\dfrac{1}{{\left( {x - 1} \right)}} - \dfrac{1}{{\left( {x + 1} \right)}}} \right)\]
\[
= x\ln ({x^2} - 1) - 2x - 2\int {\dfrac{1}{2}\left( {\dfrac{1}{{\left( {x - 1} \right)}} - \dfrac{1}{{\left( {x + 1} \right)}}} \right)} dx \\
= x\ln ({x^2} - 1) - 2x - \int {\dfrac{1}{{x - 1}} - \dfrac{1}{{x + 1}}} dx \\
= x\ln ({x^2} - 1) - 2x - \left\{ {\int {\dfrac{1}{{x - 1}}dx - \int {\dfrac{1}{{x + 1}}dx} } } \right\}
\\
= x\ln ({x^2} - 1) - 2x - \left\{ {\ln (x - 1) - \ln (x + 1)} \right\} + C \\
= x\ln ({x^2} - 1) - 2x - \ln (x - 1) + \ln (x + 1) + C \\
\int {\ln ({x^2} - 1)dx = } x\ln ({x^2} - 1) - 2x + \dfrac{{\ln (x + 1)}}{{\ln (x + 1)}} + C \\
\]
Therefore, the integral \[\int {\ln ({x^2} - 1)dx} \] is equal to \[x\ln ({x^2} - 1) - 2x + \dfrac{{\ln (x + 1)}}{{\ln (x + 1)}} + C\] .
Note: 1.Use standard formula carefully while evaluating the integrals.
2. Indefinite integral=Let $f(x)$ be a function .Then the family of all its primitives (or antiderivatives) is called the indefinite integral of $f(x)$ and is denoted by $\int {f(x)} dx$
The symbol $\int {f(x)dx} $ is read as the indefinite integral of $f(x)$with respect to x.
Formula:
$\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $
$\int {\dfrac{1}{x} = \ln x + C} $
\[{\cos ^2}x + {\sin ^2}x = 1\]
$\int {f(x)g'(x)dx = f(x)g(x) - \int {f'(x)g(x)dx} } $
Complete step by step solution:
We are given an expression \[\ln ({x^2} - 1)dx\] and we have to calculate its integral.
To calculate the integral of \[\ln ({x^2} - 1)dx\] ,we will be using Integration by parts method
The formula for calculation of integration of parts is
$\int {f(x)g'(x)dx = f(x)g(x) - \int {f'(x)g(x)dx} } $
In our question Let assume
$f(x) = \ln ({x^2} - 1)
And $g'(x) = 1$
As we know that the derivative of function x is equal to 1
So $g(x) = x$ and now calculating the derivative of $f(x)$with respect to x using rule of derivative
$\dfrac{d}{{dx}}\ln X = \dfrac{1}{X}.\dfrac{d}{{dx}}X$ By Chaining Rule
therefore ,taking $X = {x^2} - 1$
$
f'(x) = \dfrac{1}{{{x^2} - 1}}.\dfrac{d}{{dx}}({x^2} - 1) \\
= \dfrac{1}{{{x^2} - 1}}(2x) \\
= \dfrac{{2x}}{{{x^2} - 1}} \\
$
now putting the values of $f(x),f'(x),g(x)\,and\,g'(x)$into the formula of Integration by parts
\[
\int {\ln ({x^2} - 1)dx = } x\ln ({x^2} - 1) - \int {x.\dfrac{{2x}}{{{x^2} - 1}}} dx \\
= x\ln ({x^2} - 1) - \int {\dfrac{{2{x^2}}}{{{x^2} - 1}}dx} \\
= x\ln ({x^2} - 1) - 2\int {\dfrac{{{x^2}}}{{{x^2} - 1}}dx} \\
= x\ln ({x^2} - 1) - 2\int {\dfrac{{{x^2} - 1 + 1}}{{{x^2} - 1}}} dx \\
= x\ln ({x^2} - 1) - 2\int {1 + \dfrac{1}{{{x^2} - 1}}} dx \\
= x\ln ({x^2} - 1) - 2x - 2\int {\dfrac{1}{{{x^2} - 1}}} dx \\
\]
Using identity $({A^2} - {B^2}) = (A + B)(A - B)$
\[ = x\ln ({x^2} - 1) - 2x - 2\int {\dfrac{1}{{\left( {x - 1} \right)\left( {x + 1} \right)}}} dx\]
Using Partial fractions method to split \[\dfrac{1}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\] in to \[\dfrac{1}{2}\left( {\dfrac{1}{{\left( {x - 1} \right)}} - \dfrac{1}{{\left( {x + 1} \right)}}} \right)\]
\[
= x\ln ({x^2} - 1) - 2x - 2\int {\dfrac{1}{2}\left( {\dfrac{1}{{\left( {x - 1} \right)}} - \dfrac{1}{{\left( {x + 1} \right)}}} \right)} dx \\
= x\ln ({x^2} - 1) - 2x - \int {\dfrac{1}{{x - 1}} - \dfrac{1}{{x + 1}}} dx \\
= x\ln ({x^2} - 1) - 2x - \left\{ {\int {\dfrac{1}{{x - 1}}dx - \int {\dfrac{1}{{x + 1}}dx} } } \right\}
\\
= x\ln ({x^2} - 1) - 2x - \left\{ {\ln (x - 1) - \ln (x + 1)} \right\} + C \\
= x\ln ({x^2} - 1) - 2x - \ln (x - 1) + \ln (x + 1) + C \\
\int {\ln ({x^2} - 1)dx = } x\ln ({x^2} - 1) - 2x + \dfrac{{\ln (x + 1)}}{{\ln (x + 1)}} + C \\
\]
Therefore, the integral \[\int {\ln ({x^2} - 1)dx} \] is equal to \[x\ln ({x^2} - 1) - 2x + \dfrac{{\ln (x + 1)}}{{\ln (x + 1)}} + C\] .
Note: 1.Use standard formula carefully while evaluating the integrals.
2. Indefinite integral=Let $f(x)$ be a function .Then the family of all its primitives (or antiderivatives) is called the indefinite integral of $f(x)$ and is denoted by $\int {f(x)} dx$
The symbol $\int {f(x)dx} $ is read as the indefinite integral of $f(x)$with respect to x.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

