
How do you find the integral of \[\ln \left( {{x^2} + 4} \right)\] ?
Answer
548.1k+ views
Hint:Integration is the process of finding the antiderivative. The integration of \[g'\left( x \right)\] with respect to dx is given by \[\int {g'\left( x \right)dx = g\left( x \right) + C} \], where C is the constant of integration and we can find the integral of the given function by using Integration by parts method.
Complete step by step answer:
The given function is \[\ln \left( {{x^2} + 4} \right)\].As we need to find the integral, let us rewrite the function as,
\[I = \int {\ln \left( {{x^2} + 4} \right)dx} \] ………………… 1
Apply rule of Integration by Parts as
\[\int {u \cdot v \cdot dx} = u\int {v \cdot dx} - \int {\left( {\dfrac{{du}}{{dx}}\int {v \cdot dx} } \right)dx} \]
Let,
\[u = \ln \left( {{x^2} + 4} \right)\]
Differentiate u with respect to x we get
\[\dfrac{{du}}{{dx}} = \dfrac{1}{{{x^2} + 4}} \cdot 2x\]
\[\Rightarrow du = \dfrac{{2x}}{{{x^2} + 4}} \cdot dx\]
Integrating v as:
\[\int {v \cdot dx = x} \]
Implies that,
\[dv = dx \Rightarrow v = x\]
i.e., \[v = 1\]
Using equation 1, let us find the integration
\[I = \int {\ln \left( {{x^2} + 4} \right)dx} \]
\[\Rightarrow I = x\ln \left( {{x^2} + 4} \right) - \int {\left( {\dfrac{{2x}}{{{x^2} + 4}} \cdot x} \right)} dx\]
\[\Rightarrow I = x\ln \left( {{x^2} + 4} \right) - 2\int {\dfrac{{{x^2}}}{{{x^2} + 4}}} dx\]
\[\Rightarrow I = x\ln \left( {{x^2} + 4} \right) - 2\int {\dfrac{{\left( {{x^2} + 4} \right) - 4}}{{{x^2} + 4}}} dx\]
\[\Rightarrow I = x\ln \left( {{x^2} + 4} \right) - 2\int {\left( {\dfrac{{{x^2} + 4}}{{{x^2} + 4}} - \dfrac{4}{{{x^2} + 4}}} \right)} dx\]
\[\Rightarrow I = x\ln \left( {{x^2} + 4} \right) - 2\left( {\int {dx - 4\int {\dfrac{1}{{{x^2} + {2^2}}}dx} } } \right)\]
Now find the integration of dx terms we get
\[I = x\ln \left( {{x^2} + 4} \right) - 2\left( {x - 4 \cdot \dfrac{1}{2}\arctan \left( {\dfrac{x}{2}} \right)} \right)\]
\[\Rightarrow I = x\ln \left( {{x^2} + 4} \right) - 2x + 4\arctan \left( {\dfrac{x}{2}} \right) + C\]
Therefore, the integral of \[\ln \left( {{x^2} + 4} \right)\]is
\[\therefore I = x\ln \left( {{x^2} + 4} \right) - 2x + 4\arctan \left( {\dfrac{x}{2}} \right) + C\]
Hence, the integral of \[\ln \left( {{x^2} + 4} \right)\] is $x\ln \left( {{x^2} + 4} \right) - 2x + 4\arctan \left( {\dfrac{x}{2}} \right) + C$.
Note: There are different integration methods that are used to find an integral of some function, which is easier to evaluate the original integral. Hence, based on the function given we can find the integration of the function i.e., by using the integration methods as the details are given as additional information.
Complete step by step answer:
The given function is \[\ln \left( {{x^2} + 4} \right)\].As we need to find the integral, let us rewrite the function as,
\[I = \int {\ln \left( {{x^2} + 4} \right)dx} \] ………………… 1
Apply rule of Integration by Parts as
\[\int {u \cdot v \cdot dx} = u\int {v \cdot dx} - \int {\left( {\dfrac{{du}}{{dx}}\int {v \cdot dx} } \right)dx} \]
Let,
\[u = \ln \left( {{x^2} + 4} \right)\]
Differentiate u with respect to x we get
\[\dfrac{{du}}{{dx}} = \dfrac{1}{{{x^2} + 4}} \cdot 2x\]
\[\Rightarrow du = \dfrac{{2x}}{{{x^2} + 4}} \cdot dx\]
Integrating v as:
\[\int {v \cdot dx = x} \]
Implies that,
\[dv = dx \Rightarrow v = x\]
i.e., \[v = 1\]
Using equation 1, let us find the integration
\[I = \int {\ln \left( {{x^2} + 4} \right)dx} \]
\[\Rightarrow I = x\ln \left( {{x^2} + 4} \right) - \int {\left( {\dfrac{{2x}}{{{x^2} + 4}} \cdot x} \right)} dx\]
\[\Rightarrow I = x\ln \left( {{x^2} + 4} \right) - 2\int {\dfrac{{{x^2}}}{{{x^2} + 4}}} dx\]
\[\Rightarrow I = x\ln \left( {{x^2} + 4} \right) - 2\int {\dfrac{{\left( {{x^2} + 4} \right) - 4}}{{{x^2} + 4}}} dx\]
\[\Rightarrow I = x\ln \left( {{x^2} + 4} \right) - 2\int {\left( {\dfrac{{{x^2} + 4}}{{{x^2} + 4}} - \dfrac{4}{{{x^2} + 4}}} \right)} dx\]
\[\Rightarrow I = x\ln \left( {{x^2} + 4} \right) - 2\left( {\int {dx - 4\int {\dfrac{1}{{{x^2} + {2^2}}}dx} } } \right)\]
Now find the integration of dx terms we get
\[I = x\ln \left( {{x^2} + 4} \right) - 2\left( {x - 4 \cdot \dfrac{1}{2}\arctan \left( {\dfrac{x}{2}} \right)} \right)\]
\[\Rightarrow I = x\ln \left( {{x^2} + 4} \right) - 2x + 4\arctan \left( {\dfrac{x}{2}} \right) + C\]
Therefore, the integral of \[\ln \left( {{x^2} + 4} \right)\]is
\[\therefore I = x\ln \left( {{x^2} + 4} \right) - 2x + 4\arctan \left( {\dfrac{x}{2}} \right) + C\]
Hence, the integral of \[\ln \left( {{x^2} + 4} \right)\] is $x\ln \left( {{x^2} + 4} \right) - 2x + 4\arctan \left( {\dfrac{x}{2}} \right) + C$.
Note: There are different integration methods that are used to find an integral of some function, which is easier to evaluate the original integral. Hence, based on the function given we can find the integration of the function i.e., by using the integration methods as the details are given as additional information.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

